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Foreword

The VIII La Plata International School was successfully held in the period
2019 November 11 � 22 on the campus of the Universidad Nacional de La Plata.
The school was organized by the research group Modelos de Estrellas Peculiares
(MEP) of the Facultad de Ciencias Astronómicas y Geofísicas (FCAG).

The subject of this school was Pulsations Along Stellar Evolution. The
o�ered lectures covered a wide range of topics such as stellar evolution, theoretical
concepts of stellar pulsations, observing and data analysis techniques, along with
practical courses for the analysis of selected pulsating stars. The ultimate goal
of the Summer School was that the participants deepen their understanding of
the physics of stellar pulsations and learn relevant techniques to analyze and
properly interpret observational data of pulsating stars. This was achieved by
the active participation in a number of courses dealing with theoretical exercises
and practical computer-based exercises. This volume provides a comprehensive
summary of the lectures that were presented during the school.

The topics o�ered by the school attracted 58 participants from 13 di�erent
countries all over the world. The majority of participants came from Latin-
America (Argentina, Brazil, Chile, Peru, and Nicaragua), but we also had par-
ticipants from several European countries (Czech Republic, Estonia, Spain, and
United Kingdom) as well as from Asia (Georgia), Africa (Egypt), Australia, and
the United States of America. By chance, the genders of the participants were
extremely well balanced, with 29 male and 29 female astronomers, physicists and
mathematicians, in divers states of their studies (majority within their Master
or PhD studies) along with a few post-docs and more advanced researchers.

The organization of the school has received funding from the FCAG of the
Universidad Nacional de La Plata, and from the European Union's Framework
Programme for Research and Innovation Horizon 2020 (2014-2020) under the
Marie Skªodowska-Curie Grant Agreement No. 823734 (POEMS).

We wish to thank the members of the Scienti�c Organizing Committee for
their excellent selection of teachers and preparation of the program. Further-
more, we wish to express our deepest thanks to the members of the Local Or-
ganizing Committee and those students who helped with the organization. And
�nally, we are grateful to all teachers for their fantastic classes and to all partic-
ipants that helped making this school an event to be remembered.

Michaela Kraus
Andrea F. Torres
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A Brief Introduction to Stellar Evolution

Omar G. Benvenuto1, †
1Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional
de La Plata, and Instituto de Astrofísica de La Plata
(CCT-CONICET-UNLP), La Plata, Argentina
Email: obenvenu@fcaglp.unlp.edu.ar

Abstract. With the aim of providing a reference frame for the study
of stellar pulsations we describe the process known as stellar evolution.
Evolution and pulsations are deeply related and the knowledge gained in
one of them has an immediate impact on the other. First we describe
the observational basis, presenting the Hertzsprung-Russell Diagram and
other fundamental concepts. Then we describe the physical context of
stellar evolution in which, quite fortunately, matter is very close to (but
not in) thermodynamic equilibrium. This allows for a simpli�cation of
the problem of paramount importance. We describe the equation of state
of stellar matter, paying attention on when we should expect the oc-
currence of partial and full ionization (fundamental for pulsations), and
electron degeneracy. Then, we present the concept of hydrostatic equi-
librium. As a natural consequence we consider barotropic structures, like
polytropic spheres and cold white dwarfs, discussing the existence of the
Chandrasekhar's mass limit. As realistic stars are not cold but at �-
nite temperature (they radiate energy in space!), in general they are non-
barotropic. So, we need to consider the conservation of energy and also its
transport by radiation, convection and conduction. As it is well known,
the engine of stars is nuclear reactions. We present the proton-proton
and carbon-nitrogen-oxygen cycles of hydrogen burning and also the main
helium burning reactions. Then, we make some brief comments on the
methods for solving the full set of non-linear, partial di�erential equations
of stellar evolution and also those needed for computing the changes of
chemical composition. At this point we are in conditions to present stellar
evolution as a direct consequence of these physical ingredients. We dis-
cuss the main stages of stellar evolution for a variety of objects: pre-main
sequence, low and intermediate mass, white dwarfs, and �nally massive
stars. In this paper we restricted ourselves to the case of isolated and non-
rotating objects evolving during their long lived stages. In our opinion,
this provides a general basis for most of the usually considered pulsating
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stars.
Key words: stars: evolution � stars: interiors

†Member of the Carrera del Investigador Cientí�co, Comisión de Investigaciones
Cientí�cas de la Provincia de Buenos Aires (CIC PBA), La Plata, Argentina

1. Introduction

In these lectures we shall present the classical problem of stellar evolution with
emphasis on the properties of stars that determine the variety of pulsations they
su�er. This is a vast �eld of research. Because of lack of space here we are not
in conditions to make an in deep description of each of the addressed topics.
These have been presented in several textbooks. Especially relevant are those
of Chandrasekhar (1939); Cox & Giuli (1968); Clayton (1968); Kippenhahn &
Weigert (1990); Arnett (1996); and Maeder (2009). The reader may be some-
what surprised because the main references of these lectures have been published
sometime ago. The reason is very simple, the most fundamental processes occur-
ring in stars are well understood. Several facts converged to make it possible. For
example, the engine of stars (nuclear reactions) was identi�ed almost a century
ago, and the stellar interiors are extremely close to thermodynamic equilibrium.
This provides a solid basis to investigate this problem. Of course, this means in
no way that the study of stars is over. De�nitively this is not the case.

We shall present the theory of stellar structure and evolution paying special
attention to the relevant physical ingredients that determine their lives. In our
opinion, this is essential in order to understand the oscillation properties of stars
from a theoretical point of view. These oscillations carry very valuable infor-
mation about the structure of stellar interiors. Thus, structure and evolution
are intimately related to oscillations and the study of these aspects of stars are
largely complimentary.

Perhaps the most famous diagram related to stars is the Hertzsprung-Russell
Diagram (or simply HRD) in which we plot (for example) their luminosities
versus e�ective temperatures. There are several versions of the HRD in which
in place of luminosity astronomers employed absolute magnitude and a colour
index (or even the spectral type) replaces the e�ective temperature. If we collect
intrinsic data quantities from �eld stars we can construct an HRD where the
distribution of objects is not uniform. In this case, it has a statistical meaning.
There are regions of the diagram where we �nd a large density of objects. This
is due to the fact that at these regions stars evolve slowly. The so-called �Main
Sequence� (MS), on which we �nd most of the objects, is due to the strong energy
release by core hydrogen burning occurring in these stars. The MS is the longest
stage of evolution for objects undergoing intense nuclear reactions. The red giant
branch has less stars and is a shorter stage of evolution, etc.

If we collect data from a stellar cluster, all stars are essentially at the same
distance, have approximately the same chemical composition and usually it is
considered that have been born simultaneously. Thus, all stars have the same
age and because they have a mass distribution they are on an isochrone in the
HRD.
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As an example of typical HRDs, in Figure (1) we show them for the open
cluster NGC 2516 and the globular cluster NGC 1261. These diagrams are of
colour index (B-V) (that has a direct relation with e�ective temperature) versus
the apparent visual magnitude V without the correction for reddening. These
are not intrinsic data since they have to be converted to absolute magnitudes
by means of the distance modulus; but, this is the same for all stars belonging
to a cluster. Consequently, these HRD have the same structure as those with
intrinsic quantities.

Apart from the contamination due to faint �eld stars that do not belong
to these clusters, the MS is clearly visible in the HRD of the open cluster. In
the case of the globular cluster it is possible to see the lower MS (higher mass
stars evolved o� the MS in the far past), the red giant branch (RGB), horizontal
branch (HB), and asymptotic giant branch (AGB).

Usually, the width of stellar atmospheres is far smaller than stellar radii;
and the e�ective temperature corresponds to a layer in which most photons
escape from the star. As a �rst, rough approximation, the spectrum of a star
may be considered as a Planckian curve with T = Teff . Since we are interested
on the intrinsic properties of stars, in the following Sections we shall consider
the version of the HRD de�ned by the plane log

(
L/L�

)
versus log

(
Teff/K

)
where L is the bolometric luminosity, L� = 3.828 × 1033 erg s−1 is the solar
value, Teff is the e�ective temperature and K denotes Kelvin degrees. These
quantities are related by L = 4πR2σT 4

eff where R is the radius of the star and

σ is the Stefan-Boltzmann constant. Evidently, log
(
L/L�

)
= 2 log

(
R/R�

)
+

4 log
(
Teff/Teff,�

)
where Teff,� = 5780 K is the e�ective temperature of the

Sun, that has a mass M� = 1.989× 1033 g and a radius of R� = 6.96× 1010 cm.
Here we shall restrict ourselves to the case of non-rotating, isolated stars.

We feel it is not possible to present all topics in two lectures. We prefer to
discuss the most relevant stages related with stellar pulsations. Also, we shall
not treat the case of neutron stars and its related physics since it is outside the
scope of this School. Here we shall not try to make a detailed description of the
state-of-the-art of each addressed topic. We consider it more useful to review
established results.

A fundamental assumption is that oscillations do not have any secular e�ect
on stellar evolution. This means that we do not need to take care of the details of
stellar pulsations to compute stellar evolution. Otherwise we would have faced
(in the language of numerical analysis) an extremely sti� problem since there
occur quite di�erent and relevant timescales. For pulsations, timescales may be
of the order of days or less, whereas stellar evolution proceeds on millions of
years.

The remainder of this article is organised as follows. In Section (2) we
describe the equation of state of matter inside stars. Section (3) is dedicated
to describe hydrostatic equilibrium, where we also brie�y describe the theory of
polytropic spheres (� 3.1) and cold White Dwarfs (WDs) (� 3.2). In Section (4)
we describe the conservation of energy in the stellar interior. Then, in Section (5)
we present the problem of the transport of energy in stellar interiors, making a
description of the main characteristics of radiative (� 5.1), convective (� 5.2), and
conductive (� 5.3) transport mechanisms. The Section (6) is devoted to describe
the fundamental characteristics of nuclear reactions in stellar interiors. Then
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Figure 1. The HRD of the open cluster NGC 2516 (Sung et al., 2002b)
(data available at Sung et al. 2002a) and the globular cluster NGC 1261
(Kravtsov et al., 2010b) (data available at Kravtsov et al. 2010a). For
details see text.
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we describe in some detail the Proton-Proton (� 6.1), Carbon-Nitrogen-Oxygen
(� 6.2) and Helium burning (� 6.3) cycles. In Section (7) we brie�y describe
the full system of di�erential equations that describe stellar evolution together
with the method of solution for the equations of structure (� 7.1) and chemical
evolution (� 7.2). Then, in Section (8) we describe stellar evolution. Subsection
(� 8.1) is devoted to describe the main characteristics of Pre-MS evolution. (� 8.2)
is dedicated to the case of the evolution of our Sun and low mass stars. (� 8.3)
is devoted to the case of intermediate mass while in (� 8.4) we describe the main
characteristics of WDs evolution. Closing this section, in (� 8.5) we address the
case of massive stars. Finally, in Section (9) we give some concluding remarks.

2. The Equation of State

For describing stars one of the most relevant physical ingredients is the behaviour
of matter. This is described by the so-called �Equation Of State�, or EOS.
Inside stars, matter can be found on an extremely wide variety of conditions.
Apart from its chemical composition, the density and temperature vary from
ρ = 10−12 g cm−3 and T ≈ 103 K in the photosphere of a giant to ρ = 1011 g cm−3

and T ≈ 1010 K in the core of a pre-supernova near core collapse. So, matter can
be non, partially, or fully ionized, electrons may be degenerate, and even there
may appear pairs electron-positron at very high temperatures (T & 5× 109 K).
Also, in conditions of low density and high temperature, radiation pressure is
relevant.

A fundamental approximation, fully justi�ed in stellar interiors is the so-
called �Local Thermodynamic Equilibrium� or LTE. It is quite obvious that stars
are not in thermodynamic equilibrium, simply because they irradiate. However,
variations of T , ρ, etc. in stellar interior are not very steep. As a consequence,
the radiation �eld is anisotropic but only to 1 part in ≈ 1011 (see, e.g., Clayton
1968). So, the state of matter is extremely close to equilibrium. Thus, LTE
is valid and so, to describe the EOS we can employ the thermodynamics of
equilibrium.

Another fundamental fact is that the energy of interaction between particles
use to be far smaller than their kinetic energy. Thus, we may consider the mate-
rial as composed by non-interacting particles. Interactions, e.g., electrostatic or
Coulomb, are considered only for constructing very detailed stellar models (see
below� 3.2).

Taking into account that particles that compose matter are fermions (their
spins are ~/2, where ~ is the Planck constant h over 2π.), they obey the Fermi-
Dirac statistics. Then, we can write the EOS of fermionic non-interacting parti-
cles as (Chandrasekhar, 1939)

Pgas =
8π

3h3

∫ ∞
0

p3vp

1 + exp
[
β
(
E(p)− µ

)]dp, (1)

Egas
V

=
8π

h3

∫ ∞
0

p2E(p)

1 + exp
[
β
(
E(p)− µ

)]dp, (2)

N

V
= n =

8π

h3

∫ ∞
0

p2

1 + exp
[
β
(
E(p)− µ

)]dp. (3)
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Here, β = 1/kT , Pgas is the pressure due to particles and Egas is their kinetic
energy, V is the volume, N is the total particle number, n is their number density,
k the Boltzmann constant, p is the momentum of the particles, E(p) is the energy

of the particles of mass m and impulse p given by E(p) =
√
p2c2 +m2c4 −mc2,

vp is its velocity, and c is the speed of light. This represents a parametric EOS
where the parameter is the chemical potential µ.

If density is low enough, quantum mechanical e�ects are negligible and the
gas behaves as non-degenerate (Maxwell-Boltzmann statistics). Then, we im-

mediately arrive to the famous and simplest EOS: Pgas = ρkT
µH , where µ is the

mean molecular weight (this is a misleading name since in most cases there are
no molecules). For full ionization we have 1/µ =

∑
Xi(Zi + 1)/Ai where Xi is

the mass fraction of the i- component of the plasma, Zi is its electric charge and
Ai is its atomic weight. In this case, the mean kinetic energy of each particle
is 3kT/2 and the contribution to the speci�c heat per particle is 3k/2, i.e., a
constant.

Frequently, the abundances of hydrogen and helium are denoted by X and
Y respectively, while Z denotes the heavier elements fraction; they verify X +
Y + Z = 1

If temperature is not so high to provide full ionization, in order to consider
the EOS properly we have to solve for the ionic mixture. Because of the validity
of LTE we can do it by employing thermodynamic equilibrium that leads to the
so-called Saha's law. For the case of the ionization of hydrogen it reads (we
ignore corrections due to internal partition functions)

nH+ne
nH

=

(
2πmekT

h2

)3/2

exp

(
− χH
kT

)
(4)

where ni are the particle number densities, χH = 13.59 eV is the ionization
potential, andme is the electron mass. While here we present only the expression
for hydrogen, we need to consider all the elements present in the mixture (see,
e.g., Baker & Kippenhahn 1961). It leads to a non-trivial system of equations.
Considering ionizations in detail is of central relevance for stellar pulsations.

The e�ect of ionizations on the gas pressure is rather obvious, since it a�ects
the amount of free particles. Ionization is a way of storing heat that largely a�ects
the speci�c heats. For example, for a pure hydrogen plasma, when the fraction
of ionized atoms is of 50%, the speci�c heat at constant volume Cv is ≈ 20 times
the Cv without considering ionizations (Clayton, 1968).

If the gas has a much higher density, due to its very low mass compared
to that of nucleons (≈ 1830 times lower), electrons depart from the classical
behaviour. Electrons provide a strong pressure Pe due to the Pauli's exclusion
principle (there can be only one fermion per energy level). If thermal e�ects are
negligible (kT � µ) we may set T = 0. In this case, the distribution of occupied
levels goes up to the Fermi impulse pf , which is related to the chemical potential

by µ =
√
p2fc

2 +m2
ec

4 = mec
2
√
x2 + 1 (where x = pf/mec). In this case, the

particle number density is n ∝ x3 whereas, if density is not too high (see below),
electron will behave as non-relativistic and then Pe ∝ x5. On the contrary, if
density is higher and electrons are very relativistic we have Pe ∝ x4. In this case
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the integrals in Equations (1)-(3) extend on the interval of impulses [0, pf ], the
denominator is 1 and the EOS is (Chandrasekhar, 1939)

Pe = A
[
x(2x2 − 3)

√
x2 + 1− 3 ln (

√
x2 + 1− x)

]
(5)

and

ρ/µe = Bx3, (6)

where A = (8π/3)mec
2
(
mec/h

)3
, B = 8π

(
mec/h

)3
and µe is the mean molecular

weight per electron. For full ionization we have 1/µe =
∑
XiZi/Ai. Another

very important characteristic of degenerate electron gas is that it is not e�cient
for storing heat. It can be shown that Cv ∝ T (Chandrasekhar, 1939) which is
characteristic of fermionic excitations.

Notice that here we have assumed full ionization even at T = 0. This is
due to the so-called ionization by pressure. The reason for this to occur is that
particles are so close each other that the wave function corresponding to bound
states has no room to accommodate. Consequently, bound states cannot be
occupied.

Another very important source of pressure is photons. Photons are massless
Bosons (they have spin ~) and follow the so-called Bose-Einstein statistics1. As
the number of photons is not de�ned, the chemical potential of photons is zero.
This leads to the Planck function Bν

Bν =
2hν3

c2
1

ehν/kT − 1
, (7)

where ν is the frequency of radiation. Photons provide the radiation pressure
that is given by the very simple expression

Prad =
1

3
aT 4, (8)

where a is the constant of radiation.
In Figure (2) we present the typical thermodynamic conditions for stellar

interiors. We describe the regions in which the di�erent sources of pressure dom-
inate over the others. For example, the division between the regions dominated
by gas and radiation pressure is given by Prad = Pgas, etc. Also we included
the structure of several stellar interiors. For the star of 20 M�, radiation pres-
sure is important, whereas this is not the case for a 1 M� object. Also, we
show the structure of a 0.8 M� carbon-oxygen WD. While its outer layers are
non-degenerate, the deep interior is at very high densities reaching relativistic
conditions.

As we shall see below, the equations of stellar evolution include a temporal
derivative of the entropy S; so, it is useful to write down the di�erential of S. If
we consider P and T as independent variables, this di�erential is

1An even number of fermions may be together in a bound state, e.g., a 4He nucleus. These
compound objects have a spin value that is an integer multiple of ~; so, they are bosons too.
However, these particles are so massive that are non-degenerate in normal (not neutron) stars
and the quantum e�ects are negligible for their description.
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Figure 2. The conditions at which dominates each of the four basic
sources of pressure. Black solid lines divide each region. As examples
of stellar structures we included several relevant cases. In blue lines
we plot the structure of a 20 M� star on the Zero Age MS (solid) and
the conditions at helium core exhaustion (dashed). The structure of a
1M� is denoted with red lines for the case of the present Sun (solid) and
when reached red giant conditions (dashed) previous to the helium �ash
(see below � 8.2). Solid green line depicts the structure of a 5 M� star
well after helium core exhaustion. Finally, in solid cyan line we show
the structure of a cool 0.8 M� carbon-oxygen WD. All these states of
evolution are described below in Section (8).
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dS = CPdT −
δ

ρ
dP. (9)

Here CP is the speci�c heat at constant pressure and δ is the thermodynamic
derivative δ = −

(
∂ ln ρ/∂ lnT

)
P
.

The problem of the stellar EOS is treated in all textbooks cited above and
also in several papers, the interested reader may consult for example those of
Kippenhahn et al. (1967); Cox & Giuli (1968); and Timmes & Arnett (1999).

3. Hydrostatic Equilibrium

Stellar evolution proceeds so slowly on time that we can consider it as a contin-
uous sequence of structures in hydrostatic equilibrium. For non-rotating, New-
tonian objects, the equations that describe this condition are2

dP

dr
=
GMr

r2
ρ, (10)

and

dMr

dr
= 4πr2ρ. (11)

Here P is the total pressure, r is the radius, G is the Gravitational constant,
Mr is the mass enclosed inside a sphere of radius r, and ρ is the density. The
boundary conditions are Mr = 0 at r = 0 and the surface is de�ned by zero gas
pressure Pgas = 0; there r = R.

Equations (10) and (11) can be solved if the EOS of material behaves as
barotropic, i.e., P = P (ρ). This is the topic of the next two subsections.

3.1. Polytropic Spheres

Let us consider a particular barotropic form for the EOS: P = Kρ1+1/n where
n is the polytropic index and K is a constant. If we de�ne ρ = ρcθ

n where
ρc is the central density and θ is the polytropic function; and r = αξ, where

α2 = (n+1)K
4πG ρ

1/n−1
c we �nd the Lane-Emden equation

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn. (12)

The corresponding boundary conditions are θ(ξ = 0) = 1, dθ/dξ|ξ=0 = 0 and the
surface is de�ned by θ(ξ = ξs) = 0; thus, the radius R is R = αξS . The mass of
the whole sphere is given by M = 4πα3ρc(−ξ2dθ/dξ)ξ=ξs . The solution of the
Lane-Emden equation and the density pro�le is shown in Figure (3) for some
values of the polytropic index. Analytic solutions for Equation (12) are known
for n = 0, 1, and 5.

2These equations are not applicable to neutron stars. In this case we need to consider the
Tolman-Oppenheimer-Volko� equations that correspond the case of gravitation described by
General Relativity (see Shapiro & Teukolsky 1983).
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Figure 3. The polytropic function (left panel) and the density pro�le
(right panel) for few values of the polytropic index.

Polytropes with n = 3/2 are a good approximation for fully convective stars
at the Hayashi Track during the Pre-MS evolution (� 8.1) and also for low mass
WDs (� 3.2). The case of n = 3 nicely represents the case of very massive WDs
(� 3.2) and sometimes is employed as a rough approximation to the structure of
MS stars (Arnett, 1996).

3.2. Cold White Dwarf Stars

The simplest way to study the structure of WDs is to consider them to be chemi-
cally homogeneous at zero temperature with the EOS described by Equation (5).
This EOS is not polytropic but equations may be handled in a similar way to
�nd the equation that describes the structure of WDs. Indeed, as quoted above,
its polytropic index is 3/2 at low densities and 3 at high densities (relativistic
degeneracy). This was done by Chandrasekhar (1939) who found one of the
most relevant results of stellar astrophysics: a degenerate star can be in hy-
drostatic equilibrium only if its mass is below a value currently known as the
Chandrasekhar's Mass Limit

MCh =
5.75

µ2e
M�. (13)

Because of evolutionary reasons, WDs with masses M > 10−2M� can have a
little amount of hydrogen located in the outermost layers. This has a minor
e�ect on the total mass of the WD. If we neglect it, for objects composed by
matter that has symmetric nuclei (these are nuclei with the same number of



A Brief Introduction to Stellar Evolution 13

protons and neutrons, e.g., 4He, 12C, 16O, etc.) µe = 2 and MCh = 1.4M�
3.

Observations to measure the masses and radii of WDs are di�cult, in any case
they are in nice agreement with the predictions of this theory. S. Chandrasekhar
awarded the Nobel Prize of Physics in 1983 for this work.

Remarkably, the WD with M = MCh has in�nite density and zero radius!
Evidently, this indicates that some basic hypotheses have to be improved, at
least for very massive WDs. This was done by Hamada & Salpeter (1961) who
applied the EOS derived by Salpeter (1961). They considered Coulomb and
other interactions for the cold degenerate plasma. These corrections represent
a negative correction to the pressure of free electrons. So, for a given pressure
the gas is denser compared with the value corresponding to the free particle
treatment given by Equation (5).

At very high densities (ρ > 109 g cm−3) the electron chemical potential
becomes so high that it is energetically favourable their capture by nuclei. This
phenomenon is usually known as �electron capture�. Thus, at such high densities
an increase in density makes the pressure to grow slower (the EOS softens). This
induces the occurrence of a gravitational instability at a mass similar to the value
found by Chandrasekhar, but at �nite stellar radius.

An important result is related to very low mass objects (M < 10−2M�):
the corrections to the free particle EOS become proportionally larger the lower
the object mass is. Then, it is found that there is a maximum radius for such
low mass objects. This result is absent in the treatment by Chandrasekhar, who
found that the lower the mass the larger the radius. Because of the complexity
of its EOS (see, e.g., Saumon et al. 1995), very low mass WDs are not simple
objects. They are deeply related to the Solar System's gaseous giant planets4.

The mass radius relation for cold WDs is presented in Figure (4) (see also
Hamada & Salpeter 1961).

Among other phenomena, the theory of WDs has a direct impact for example
in the theory of Type Ia supernova explosions. Further details on the physics of
cold WDs can be found in Shapiro & Teukolsky (1983).

Let us remark that, apart from the great success of this theory, this is not
enough for considering the non-radial pulsation of WDs. For such purpose the
zero temperature hypothesis must be relaxed and WDs should be constructed as
consequence of stellar evolution as it will be described below in � (8.4).

4. Conservation of Energy in Stellar Interiors

In order to study non-barotropic structures we have to consider the conservation
and transport of energy in stellar interiors. The equation of energy conservation
can be written as

∂Lr
∂r

= 4πr2ρ

(
εn − εν − T

∂S

∂t

∣∣∣∣
Mr

)
. (14)

3However, for an iron 56Fe composition, µe = 2.153 and MCh = 1.24M�

4This is especially true for Jupiter and Saturn because their structures are mostly gaseous.
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Figure 4. Mass radius relation for cold WDs. Solid lines represent
sequences that consider the Salpeter (1961) EOS and are similar to
those presented by Hamada & Salpeter (1961). Dashed lines denote
the Chandrasekhar WDs. We considered models of carbon and iron.
Green dots represent the data given in Dufour et al. (2017). Notice
that massive WDs (M & 0.6M�) are in excellent agreement with the
theoretical results. Lower mass objects have larger radii due to thermal
e�ects (See below, Figure (12)).
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Here Lr is the luminosity that emerges from a spherical surface of radius r, εn
(εν) is the energy release (loss) due to nuclear reactions (neutrino emission) per
gram and second, and S is the entropy per mass unit. We should remark that
the derivative of the entropy is computed for a �xed mass element (Lagrangian)
since it is the element that exchanges energy. εn and εν are functions strongly
dependent on the temperature, density and the chemical composition. So, it is
unavoidable to compute the chemical evolution of the stellar interior to compute
stellar evolution.

The boundary condition is Lr = 0 at the stellar centre. Since there occurs a
partial derivative with respect to time, this indicates that the star at time t+∆t
is connected with its structure at t.

There may occur (for example in the case of cold WDs) that εn = 0, εν = 0
and Lr > 0. So, the star is releasing entropy. This does not violate the second
principle of thermodynamics, since radiation carries away entropy and in such
case the isolated system in which total entropy cannot diminish is the star and
the surrounding space.

5. Transport of Energy in Stellar Interiors

Because of the variety of thermodynamic conditions, it is not surprising that
all possible processes of energy transport play a rôle in stellar interiors. These
processes are radiation, convection and conduction.

Radiation is the dominant process for transporting energy when material
is transparent enough. Material may be considered at rest and the transport is
driven by electromagnetic radiation. When matter is not so transparent, energy
is transported by convection. Convection can be roughly described as two cur-
rents of matter moving, one outwards and the other inwards without net mass
�ux. If the outward �ux carries more energy than the inward one it renders a
net energy �ux. Convection is one of the most uncertain ingredients of stellar
interiors. This is especially important for the case of the outer layers of cold
stars. Indeed, the uncertainties in the treatment of convection (usually the Mix-
ing Length Theory MLT) prevent us to get a fully predictive theory in the red
part of the HRD. Finally, conduction is important in conditions of very high
densities.

Most of the stars have radiative and convective layers. For example, our Sun
has a convective envelope and radiative interior, massive stars on the upper MS
have convective cores and radiative envelopes, etc. Conduction is important in
conditions of very high densities attained in the core of red giant stars and WDs.
Indeed, conduction is usually considered so e�cient that it is able to transport
energy with a very small temperature gradient. In other words, conduction
usually lead to structures nearly isothermal.

There is another physical process capable of transporting energy. This is
the emission of neutrinos. In the context of normal stars, this is fundamentally
di�erent from the other three processes quoted above. Neutrinos have a so small
interaction cross section with matter that their mean free path is by far larger
than star sizes. So, neutrino emission acts as a local cooling process. The only
contexts in which neutrinos have to be transported are core collapse supernovae
(Janka et al., 2016) and the birth of neutron stars (Burrows & Lattimer, 1986).
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5.1. Radiative Transport and the Opacity

The opacity is due to interactions that remove photons from a given direction
of propagation. There are of two types of opacity sources qualitatively di�erent.
One can be de�ned as true absorption in which a photon is destroyed and its
energy is employed to excite some degree of freedom of the plasma. The other
process does not destroy the radiation but changes the direction of propagation;
this is the scattering.

True absorption is due to

• Bound-Bound transitions: An electron jumps from a discrete level to an-
other at higher energy. It leads to discrete absorption opacity.

• Bound-Free transitions: An electron jumps from a discrete level to the
continuum. It leads to continuous opacity with a sharp cut o� edge at
wavelength corresponding to photons with the ionization energy.

• Free-Free transition: An electron jumps from two states of the continuum
in the Coulomb �eld of a neighbouring ion. It also leads to continuum
opacity.

At conditions of full ionization of the material, the only possible process is scat-
tering. This due to the well known fact that free particles cannot absorb photons.
It is easy to verify that the absorption of a photon by a free particle cannot ful�l
energy and impulse conservation simultaneously.

As stated above, the stellar interior is in LTE. Thus, the radiation �eld is
almost a black body spectrum given by Equation (7). It can be shown (see,
e.g. Clayton 1968) that the opacity relevant for stellar interiors is the Rosseland
mean opacity, de�ned as

1

κR
=

[ ∫ ∞
0

dBν
dT

dν

]−1 ∫ ∞
0

1

κ∗ν,a + κν,s

dBν
dT

dν (15)

where κ∗ν,a is the true absorption coe�cient κν,a corrected by induced emission

κ∗ν,a = κν,a
(
1− exp (−hν/kT )

)
, and κν,s is the scattering coe�cient.

Considering the number of species, the di�erent degrees of ionization and
the population of the energy levels of each of them it is easy to conclude that the
amount of possible transitions is quite large. Also, in order to apply the theory
of interaction of matter with radiation it is necessary to know the wave function
of the present ions and the perturbations due to mean �eld e�ects that were
not essential for the treatment of the EOS here are unavoidable. This makes
radiative opacity calculations among the most di�cult in astrophysics. Notice
that in most cases the results are hardly testable in laboratory. This is not a
minor di�culty.

The �rst opacity tables were computed assuming that all wave functions
correspond to hydrogen like ions (ions with charge Z and one bound electron)
which represents a poor approximation to reality. Since computational facilities
were powerful enough, opacities were largely improved. Now, the OPAL project
Iglesias & Rogers (1996); Rogers & Iglesias (1992) published tables of Rosseland
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opacities5 that cover a large portion of the conditions present in stellar interiors
and virtually all chemical mixtures expected to occur in stars. For a given
chemical composition these tables are presented as functions of the logarithms
of T and R, with the latter de�ned as6 R ≡ ρ/T 3

6 (where T6 is the temperature
in millions of Kelvins). These tables cover temperatures from 6 × 103K ≤ T ≤
5× 108K and 10−8 ≤ R ≤ 101.

OPAL calculations neglect the presence of molecules. For temperatures
below few thousands of Kelvins molecules have to be included. Classical calcula-
tions of opacities considering the molecular contributions have been presented by
Alexander & Ferguson (1994) who tabulated opacities for a variety of chemical
compositions, temperatures in the interval 2.7 ≤ log (T/K) ≤ 4.5 and the same
values of R as in OPAL tables.

A typical result is presented in Figure (5) where we show the values of opac-
ity for a Solar mixture (X = 0.70, Y = 0.28, Z = 0.02) as function of the
temperature for di�erent values of R. For low temperatures, κR has a deep min-
imum and tends to increase with T up to values at which molecules are broken.
The maximum opacity values correspond to conditions of partial ionization of
the species that dominate the composition (in this case hydrogen and helium).
At higher T , κR decreases being dominated by bound-free and free-free transi-
tions. For even higher T , and especially for low R values, κR shows a remarkable
minimum. It corresponds to fully ionized matter that has a Thompson scattering
opacity which corresponds to a value of κR = 0.19(1 +X) cm2 g−1.

In spite of the great e�orts devoted to improve stellar opacities, still there
are conditions for which they are not accurately known. This is so especially
since for low mass objects interactions are strong and the perturbative expansion
employed become poor approximations. This is the case found for the envelope
of WDs and also very low mass stars and substellar objects.

It cannot overstated the relevance of the opacity. It appears in the equa-
tions of stellar evolution and oscillations. However, there is a quite remarkable
di�erence: while opacity derivatives play no rôle in stellar evolution, they are
essential for non-adiabatic pulsation calculations. So, it is not only necessary to
know opacities accurately but also their derivatives (see carefully Figure (5)).

If radiative transport prevails, the gradient of temperature is given by

∇rad =

(
d lnT

d lnP

)
rad

=
3

16πacG

κRPLr
MrT 4

(16)

5.2. Convective Transport

In convective zones we need to compute the temperature gradient ∇conv. The
treatment usually employed is that given by the Mixing Lenght Theory (MLT).
This theory assumes (see, e.g., Cox & Giuli 1968; Kippenhahn & Weigert 1990)
that bubbles carry heat that is exchanged with the surroundings after travelling

5These are available at https://opalopacity.llnl.gov/existing.html. Also, they provide
interpolation routines tailored to handle these tables.

6This quantity has been chosen because of numerical convenience since in stellar interiors R
vary on a much narrower interval than ρ, that was employed in older tabulations.

https://opalopacity.llnl.gov/existing.html
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Figure 5. The Rosseland mean opacity for a Solar mixture. At low
temperatures (Log(T/K) ≤ 3.7) opacities include the contributions due
to molecules whereas for higher temperatures they are due to atoms,
ions, and electrons. Di�erent lines are labelled with the corresponding
value of Log(R). For further details see text.
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a distance `. Remarkably, this critical parameter is not provided by the theory.
This is a serious shortcoming since the temperature gradient ∇conv is strongly
dependent on this parameter. Frequently, ` is adjusted to �t the radius of the Sun
and then is applied to any star. Certainly, this procedure is not free of objections.
There are in the literature a large number of proposals of how to improve the
treatment of energy transport by convection. However, there is no consensus on
what is the best way to do it. Clearly, this problem is still open. Despite these
limitations, MLT is used in stellar modelling because of its simplicity.

The temperature gradient ∇conv can be expressed as a function of two di-
mensionless parameters: U and W de�ned as

U =
3acT 3

CPρ2κR`2

√
8HP

gδ
(17)

and
W = ∇rad −∇ad (18)

where g is the gravitational acceleration, and HP is the pressure scale height.
U is proportional to the ratio of the time for free falling a distance ` and the
thermal adjustment timescale. Usually, ` is written as ` = αmltHP where αmlt
is a free parameter and HP is given by

HP = − dr

dlogP
=
P

gρ
=

r2P

GMrρ
. (19)

Notice that HP → ∞ at the stellar centre, while near surface it is HP � R.
With these quantities we have to solve the cubic equation(

ξ − U
)3

+
8U

9

(
ξ2 − U2 −W

)
= 0 (20)

and then, we compute the temperature gradient with

∇conv = ∇ad + ξ2 − U2. (21)

Due to the rough description of convection made by the MLT, ∇conv is a
rather uncertain quantity. In convective cores this uncertainty has no impact on
the structure of the star, since ∇conv di�ers from ∇ad typically only in ≈ 10−8.
In other words, at these conditions convection is almost adiabatic since the heat
exchanged is far smaller than the heat content of the material. However, this is
not the case for convective envelopes. In outer layers, convection is appreciably
non-adiabatic (the di�erence ∇conv−∇ad is non-negligible) and the uncertainties
in ∇conv make the outer structure of these stars to be poorly known. This fact
is sometimes forgotten but it is very relevant for a correct interpretation of the
observational data based on theoretical models that employ this theory.

5.3. Conductive Transport

As already quoted, conduction is important at high densities. In these condi-
tions electrons are largely inhibited to undergo Coulomb scattering because most
quantum states are occupied (and then, they are not available as �nal state for
scattering because of the Pauli's exclusion principle). Thus, electrons use to have
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a very large mean free path and carry information of temperature di�erences over
long distances. This process has been studied in many papers, e.g., Itoh et al.
(1983); Itoh et al. (1984).

Conduction is usually handled to de�ne a conductive opacity equivalent to
the Rosseland mean opacity. Then, radiative and conductive opacities are added
as parallel resistances in electric circuits:

1

κ
=

1

κR
+

1

κcond
. (22)

Evidently, the dominant opacity is the lowest of them.
As stated above, there are thermodynamic conditions at which κR is not

accurately known and we cannot apply Equation (22). Fortunately, in most
situations this does not represent a serious shortcoming since in these cases we
have κcond � κR and then, κ = κcond

6. Nuclear Reactions

At present, it is clear that the main source of energy that allow stars to shine on
very long times is nuclear reactions.

Nuclei are objects formed by protons and neutrons that remain bound by
strong interactions. Usually, the numbers of protons and neutrons are denoted by
Z and N respectively while the total baryon number of a nucleus is A = N +Z.
The radius of nuclei is approximately 1.2× 10−13A1/3 cm = 1.2A1/3 Fm. Let us
de�ne the binding energy B(A,Z) as B(A,Z)/c2 = M(A,Z)−Zmp−(A−Z)mn.
Here M(A,Z) is the mass of the nucleus (A,Z) and mp (mn) is the mass of the
proton (neutron). A nucleus can exist if B(A,Z) < 0, i.e., to disintegrate it is
necessary to add an amount of energy greater or equal to |B(A,Z)|. Notice that
the condition B(A,Z) < 0 does not imply the stability of nucleus (A,Z); it may
be stable or decay by several channels (e.g., by the emission of a photon, proton,
neutron, electron, 4He, etc.).

It is well known that the most tightly bound nuclei are those with Z values
close to iron: vanadium, manganese, chromium, cobalt, nickel, copper, etc. If a
fusion reaction occurs between light nuclei and produces a nucleus lighter than
iron peak isotopes, in general it will be exothermic. This is the way stars release
energy: they continuously undergo reactions that produce more tightly bound
nuclei. As energy conserves, a part of it may be stored in its interior and the
rest is released as luminosity.

As in any combustion process, nuclear reactions modify the composition
of the stellar interior and slowly change the mean molecular weight. So, the
stellar structure has to accommodate to the continuously changing distribution
of elements, modifying its characteristics (radius, luminosity, etc.). This, and
the energy released as luminosity are the very reasons why stars evolve.

At the conditions present in stellar interiors, protons, neutrons and nuclei
are non-degenerate particles that obey the Maxwell-Boltzmann distribution of
velocities

φ(v)d3v = 4π

(
h2

2πµkT

)3/2

v2 exp

(
− µv2

2kT

)
dv (23)
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where µ is the reduced mass of the reacting particles7, and v is their relative
velocity. This fact is of enormous relevance, since the particles that undergo the
reactions are in the high energy tail of the distribution.

Nuclear reactions in astrophysics occur at very low energy. Let us imagine
that two positively charged nuclei approach each other. Since typical energies
are low (≈KeVs) and the potential barriers are much higher (≈MeVs), classical
physics predicts the occurrence of a turning point of the trajectories that pre-
vents nuclei to get close enough to feel their structures, inhibiting any reaction.
However, the correct treatment is given by quantum mechanics which allows the
occurrence of the tunnel e�ect that provides a way for nuclei to go across the
potential barrier and allows the reaction to occur.

The fundamental quantity to go further is the nuclear reaction cross section
σ, usually is de�ned as

σ(v) =
S(E)

E
exp

(
− 2πZ0Z1e

2

~v

)
. (24)

The exponential factor is the so-called Gamow Factor that describes the tun-
nelling across the repulsive Coulomb potential, E = µv2/2 is the energy at the
reference frame in which the centre of mass is at rest, Z0 and Z1 are the charges
of the reacting nuclei, and e is the electric charge unit. In the case in which
the energy of the projectile does not coincide with any energy level of the nuclei
S(E) is a smooth function and the reaction proceed as non-resonant.

In the case in which particles reach the energy level of the compound nucleus,
σ is described by the Breit-Wigner cross section

σ =
(2`+ 1)

4π
λ2

Γa(Γ− Γa)

(E − Er)2 + Γ2
. (25)

Here ` is the quantum number of angular momentum corresponding to the res-
onance, Er is the energy of the resonance, Γ is the width of the energy level, Γa
is the width due to the resonance channel, and λ is the De Broglie wavelength
of the particle.

The factor S(E) in Equation (24) cannot be measured in laboratory directly
for the range of energies at which non-resonant reactions occur in stars. At
these energies, reaction cross sections use to be too low for such purpose. So,
it is a common practice to measure the reactions at energies much higher at
which resonances occur and reactions are by far more frequent. Then, employing
expressions like Equation (25) the cross section is extrapolated to stellar energies.
This procedure leads to uncertainties in the knowledge of the factor S(E).

In order to compute the energy release due to nuclear reactions as well as
the change of chemical abundances we have to compute their reaction rates. This
is given by an integral over the distribution of velocities of the particles

r =
N0N1

1 + δ0,1

∫ ∞
0

σ(v) v φ(v)d3v (26)

7Do not confound with the mean molecular weight de�ned in the treatment of the equation of
state.
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where N0 and N1 are the particle number densities of the reacting nuclei. The
Kroenecker's delta takes into account that if particles are identical, the number
of di�erent pairs has to be corrected by a factor of one half.

In the case of non-resonant reactions the rate is

rnr =
2.62× 1029

(1 + δ0,1)AZ0Z1
ρ2
X0X1

A0A1
S0τ

2 exp
(
− τ
)
cm−3 s−1, (27)

where A0 and A1 are the masses of the reacting nuclei, X0 and X1 are their
abundances by mass, and A the reduced mass (1/A = 1/A0 + 1/A1). S0 is the
value of S(E) at the energy of maximum e�ciency of the reactions (Clayton,
1968) given in units of KeV barn (1 barn= 10−24 cm2), and τ is

τ = 42.48

(
Z2
0Z

2
1A

T6

)1/3

. (28)

For the case of resonant reactions the expression is

rr =
2.94× 1036

1 + δ0,1
ρ2
X0X1

A0A1

1

AT6

Γ1(Γ− Γ1)

Γ
exp

(
− 11.61

Er
T6

)
cm−3 s−1, (29)

where Er is the energy of the resonance in KeV units and Γ1 is the energy width
of the resonance employed by the reaction.

The energy release due to nuclear reactions is given by

εnuc =
1

ρ

∑
i

riQi (30)

where Qi is the energy released and the sum goes over all the reactions.

6.1. The Proton-Proton Cycle

The Proton-Proton cycle is the following sequence of reactions

1H + 1H → 2D + e+ + νe, (31)
2D + 1H → 3He, (32)

3He+ 3He → 4He+ 2 1H, (33)
3He+ 4He → 7Be, (34)

7Be+ e− → 7Li+ νe, (35)
7Li+ 1H → 2 4He, (36)
7Be+ 1H → 8B, (37)

8B → 8Be+ e+ + νe, (38)
8Be → 2 4He. (39)

The key Reaction (31) of the Proton-Proton cycle was identi�ed by Hans
Bethe. Two protons encounter each other; then, one becomes a neutron and
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get bounded as a deuteron. This is a weak interaction that has an extremely
low cross section. The deuteron is the simplest composed nucleus with a low
binding energy. Considering it as bounded in a spherical potential well, the wave
function occupies an appreciable volume in space, even outside the well. This
has the important consequence that Reaction (32) has a cross section larger than
Reaction (31) by a factor of ≈ 1018. Then, in the deep solar interior, the ratio
of the abundances of deuterium to hydrogen is

(
D/H

)
� ≈ 10−18. However,

remarkably, on Earth this ratio is much larger:
(
D/H

)
⊕ ≈ 10−4. This fact is

easily accounted for if we assume that the deuterium present on Earth is due
to Big Bang nucleosynthesis and that the matter forming the Earth has never
been in the solar interior. Evidently, it imposes a fundamental condition to any
theory of the formation of our Solar System.

The deuteron captures another proton and produces a 3He (Reaction 32).
Then, two 3He nuclei fuse to give a 4He and two 1H (Reaction (33)). This is the
PP I subcycle. When there is 4He, it is possible the occurrence of Reaction (34),
and the cycle goes through subcycles PP II (Reactions (31), (32), (34), (35), and
(36)) or PP III (Reactions (31), (32), (34), (37), (38), and (39))

Because in this cycle the reactions involve the lightest nuclei, the Coulomb
barriers are the lowest possible. So, the PP-cycle is the dominating energy source
at low temperatures (see below Figure (6)). Of course, there are reactions that
can occur at lower temperatures. For example, Reaction (32) is the only one
that occurs in substellar objects with masses of & 10−2M�. For the case of Solar
composition objects, it dominates for stars with M ≤ 1.2M�.

The rate of energy release for the PP-cyle in stationary conditions8 is given
by

εpp = 2.38× 106
ρX2

T
2/3
6

exp

(
− 33.80

T
1/3
6

)
erg g−1 s−1. (40)

The PP-cycle is self starting. It needs no other isotope but hydrogen present
for it to occur (of course, if there is no 4He, the only possible subcycle is the
PP I). This is in sharp contrast with the next cycle to be presented, the Carbon-
Nitrogen-Oxygen cycle

6.2. The Carbon-Nitrogen-Oxygen Cycle

The other way to burn hydrogen in stellar interiors is the Carbon-Nitrogen-
Oxygen (or CNO) cycle:

8This corresponds to the case in which deuterium and the isotopes of lithium, beryllium and
boron have low abundances that remain almost constant on the timescale of hydrogen burning.
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12C + 1H → 13N, (41)
13N → 13C + e+ + νe, (42)

13C + 1H → 14N, (43)
14N + 1H → 15O, (44)

15O → 15N + e+ + νe, (45)
15N + 1H → 12C + 4He, (46)
15N + 1H → 16O, (47)
16O + 1H → 17F, (48)

17F → 17O + e+ + νe, (49)
17O + 1H → 14N + 4He. (50)

The CNO cycle does need for the presence of 12C or 14N . This is very
di�erent from the PP-cycle. In this cycle protons are captured on heavier nuclei
that produce β-unstable isotopes that decay on a timescales of few minutes.
Protons are converted to neutrons in such decays (Reactions (42), (45), and
(49)). This cycle is usually divided in two subcycles, the CN (Reactions (41)-
(46)) and ON (Reactions (44), (45), and (47)-(50)). In the CN (ON) subcycle the
12C (14N) acts as a catalyst because it is destroyed and then produced during
the subcycle.

Compared to the PP-cycle, since proton captures occur on heavier nuclei,
the CNO cycle is possible for higher temperatures. The mean energy release in
stationary conditions is given by

εcno = 8.67× 1027
ρXXCN

T
2/3
6

exp

(
− 152.28

T
1/3
6

)
erg g−1 s−1 (51)

where XCN is the abundance of 12C and 14N .

6.3. The Helium Burning

-
The main helium burning reactions are

4He+ 4He ↔ 8Be, (52)
8Be+ 4He ↔ 12C∗, (53)

12C∗ → 12C, (54)
12C + 4He → 16O, (55)
16O + 4He → 20Ne, (56)

20Ne+ 4He → 24Mg. (57)

Considering that the species present at the end of hydrogen burning are
helium and traces of hydrogen, a fundamental di�culty for burning helium is
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that there are no stable nuclei with A = 5 or 8 in Nature. The 3α cycle9 is
formed by Reactions (52)-(54). This has been proposed by Salpeter and Hoyle.
Salpeter recognised that this had to be at least a two step cycle. Hoyle proposed
that Reaction (53) must be resonant reactions in order to account for the amount
of 12C present in the Universe. In particular, he postulated the existence of an
excited energy level of the 12C for allowing the resonant reaction to occur. In
a landmark discovery of nuclear astrophysics, the existence of this energy level
was con�rmed experimentally by W. A. Fowler. In few words, two 4He fuse to
produce a highly unstable 8Be (decay time 2.6× 10−16 s) that, before decaying,
captures another 4He to produce an excited 12C∗. As a �nal reaction, very
few times the excited carbon nucleus 12C∗ decays by means of two forbidden
radiative transitions to become 12C; but, by far, the most probable end of 12C∗

is to split back in three helium nuclei. Reactions (52) and (53) are resonant and
endothermic, and the remaining (54) is by far more exothermic. Reactions (55)-
(57) are other important reactions during the helium burning stage.

The energy release due to the 3α cycle is

ε3α = 5.09× 1011
ρ2Y 3

T 3
8

exp

(
− 44.027

T8

)
erg g−1 s−1 (58)

where T8 = T/108K and Y is the abundance of 4He.
A comparison of the energy release of the main nuclear reaction cycles (PP,

CNO, and 3α) is presented in Figure (6).

7. The Equations of Structure

The full set of partial di�erential equations of stellar evolution is

∂r

∂Mr
=

1

4πr2ρ
, (59)

∂P

∂Mr
= −GMr

4πr4
, (60)

∂Lr
∂Mr

= εn − εν − T
∂S

∂t
, (61)

∂T

∂Mr
= −GMrT

4πr4P
∇. (62)

Two boundary conditions are imposed at the centre (Mr = 0), we have r = 0 and
Lr = 0. The others are set at the outermost layers (Mr = M), where T = Tatm
and P = Patm; Tatm and Patm are the temperature (usually the e�ective one)
and the total pressure at the stellar atmosphere.

In order to �nd the value of the temperature gradient ∇ we have to consider
its stability against convection. Let us consider the Schwarzschild criterium
that states that if ∇rad ≤ ∇ad, ∇ = ∇rad, if ∇rad > ∇ad, ∇ = ∇conv, where
∇ad =

(
∂ lnT
∂ lnP

)
S
.

9Its name is due that sometimes 4He nuclei are referred to as α particles.
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Figure 6. The rates of energy release due to the Proton-Proton,
Carbon-Nitrogen-Oxygen, and Triple Alpha cycles (PP, CNO, and
3α respectively). For the PP and CNO cycles we assumed X = 1,
ρ = 1 g cm−3, and XCN = 0.01. For the case of the 3α we considered
Y = 1, ρ = 104 g cm−3 which are typical values for helium burning.



A Brief Introduction to Stellar Evolution 27

Here we have written the system of equations as a function of Mr. This is
usually referred to as Lagrangian variable, in contrast to the Eulerian variable r.
This is more adequate because of numerical reasons.

As the constitutive physics is strongly dependent on the chemical compo-
sition, it is necessary to simultaneously solve the equations for the evolution of
the abundances.

7.1. Solution of the Structure Equations

Computing stellar evolution is possible only by means of numerical simulations.
The method usually employed for such purpose has been devised by Louis Henyey
(Henyey et al., 1964) in the end of �fties. Henyey proposed to employ a �nite
di�erences method with an implicit algorithm, writing temporal derivatives as
backward di�erences. This has been masterfully described by Kippenhahn et al.
(1967). The key advantage of such algorithm compared to others is its numerical
stability. With this method it is possible to handle stellar models with few
thousand of concentric shells and to compute its evolution even with an average
personal computer.

7.2. Solution of the Chemical Evolution Equations

When computing stellar models, one possibility is to study them paying special
attention to the evolution. In this case it may be enough to consider a nuclear
reaction network (the name usually employed when referring to the system of
di�erential equations that provide the chemical evolution of the stellar interior)
with few tens of carefully chosen isotopes. When models are constructed to be
applied to study stellar oscillations this strategy is adequate.

On the contrary, if we construct stellar models to compute the nucleosyn-
thesis products, things are far harder. In this case, the number of isotopes to be
considered may be of thousands and the number of reactions connecting them
can be an order of magnitude larger. A key property of these reaction networks
is that they include reaction rates that operate on very disparate timescales,
making the problem very sti�. A classical example of this di�culty is in the so-
lution of the detailed reaction network of PP cycle when we consider deuterium
explicitly, the rates of Reactions (31) and (32) di�er in a factor of 1018. The
implicit method of Bader & Deu�hard is strongly recommended (Press et al.,
1992). A very nice account of the di�culties of nucleosynthesis calculations can
be found in Timmes (1999).

When nuclear burning occurs in convective layers, convective currents have
a characteristic timescale by far shorter than that of nuclear reactions. Thus, the
entire convective zone is continuously mixed and burned. An extreme assumption
is to consider that mixing is in�nitely fast (instantaneous mixing). So, the entire
convective zone remains homogeneous. Also, convective boundaries use to move,
and this has to be considered in detail. Instantaneous mixing is not valid during
the latest stages of massive stellar evolution close to the �nal core collapse.
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8. The Evolution of Stars

8.1. The Pre-Main Sequence of Low Mass Stars

Here we describe the stage usually called Pre-MS or PMS. We shall restrict
ourselves to the case of low mass objects. For the case of higher mass objects
the problem is far more complex.

Essentially, the PMS is the stage in which stars evolve from the initial es-
tablishment of hydrostatic equilibrium up to core hydrogen burning ignition. At
the very beginning of the PMS the stellar matter is so opaque that the object
is entirely convective up to its photosphere. This kind of structure is said to
correspond to the Hayashi Line along which the stars initially evolve (see, e.g.,
Kippenhahn & Weigert 1990). For a given mass value, the Hayashi line is a very
steep line that de�nes the red edge of the region of the HRD at which stars can be
located. To the right side of this line hydrostatic equilibrium is not possible. In
this initial stage the stellar structure is well approximated by a polytropic sphere
with n=3/2 (see � 3.1). The object shines thanks to the release of gravitational
energy due to contraction. This e�ect increases the internal temperature which,
in turn, makes the opacity to decrease (see Figure (5)) and the centre of the
star becomes radiative. So, the evolutionary track departs from the Hayashi line
bending in the HRD to higher e�ective temperatures.

Here we have just introduced the fundamental concept of evolutionary track.
This is generally referred to the path followed by a star in the HRD during its
evolution10.

The PMS ends when hydrogen burning establishes and the star arrives to
the quite inappropriately called Zero Age MS (or simply ZAMS). These ages,
de�ned in this case when the star has burned 1% of the original hydrogen content
are given in Table (1). A typical PMS evolution on the HRD is presented in
Figure (7). These tracks have been calculated with our evolutionary code for
this lecture notes (Benvenuto & De Vito, 2003)

8.2. The Evolution of Low Mass Stars

Usually we call star an object that at some stage of its evolution shines with a
luminosity fully provided by nuclear reactions. For Solar composition, stars have
masses M ≥ 0.08M�. Sub-stellar objects with 0.016M� ≤M ≤ 0.08M� release
energy by nuclear reactions and gravitational contraction. These are the brown
dwarfs. For even lower masses, M ≤ 0.016M�, temperature is so low that the
objects cannot undergo any nuclear reaction and are fed only by gravitational
contraction (Burrows et al., 1995). These are the gaseous giant planets. For sub-
stellar objects usually it is very important the burning of primordial deuterium
by Reaction (32) but the PP cycle is not completed because the higher Coulomb
barrier inhibits the occurrence of Reaction (33).

In Figure (8) (Sackmann et al., 1993) we show the evolution of our Sun.
Its PMS is denoted by a dashed line and the object reaches the ZAMS at point

10Of course, it is possible to call this way the path that describe the change of other quantities,
e.g., the evolution of the central conditions of the star: Log Tc versus Log ρc, but this is not
the standard case.
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Figure 7. The PMS evolution for a set of stellar masses. Calculations
start from a polytropic structure (n = 1.5) on their respective Hayashi
tracks and are followed up to the onset of core hydrogen burning. Each
curve is labelled with the corresponding mass given in solar units. These
tracks have been computed by ourselves employing our stellar code.
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Table 1. Conditions at the end of the Pre-MS. Columns indicate the
mass of the object in solar units, the age in million years and the decimal
logarithms of the e�ective temperature in Kelvins, the luminosity in
solar units, the central temperature in Kelvins and the central density
in g cm−3.

M Age Log Teff Log L Log Tc Log ρc
0.40 10244 3.557 -1.657 6.906 1.812
0.60 1391 3.571 -1.241 6.968 1.824
0.80 522.2 3.641 -0.686 7.051 1.857
1.00 331.9 3.694 -0.288 7.101 1.855
1.25 117.2 3.765 0.278 7.205 1.909
1.50 73.4 3.837 0.646 7.260 1.893
1.75 49.3 3.900 0.937 7.296 1.850
2.00 32.6 3.948 1.177 7.320 1.793
2.50 19.8 4.021 1.569 7.353 1.683
3.00 11.1 4.078 1.881 7.376 1.586

A. There, the star is burning hydrogen in its radiative core. B corresponds to
the present Sun and E denotes the core hydrogen exhaustion that corresponds
to the age of 10.91 Gyr. At that moment the star leaves the MS and starts
to undergo hydrogen shell burning that dominates its energy balance, evolves
to lower e�ective temperatures and develops a deep outer convective zone, as-
cending on the Red Giant Branch (or RGB, points F to H). The stellar core is
strongly degenerate and undergoes heavy neutrino losses that make the maxi-
mum temperature to be located o�-centre. Helium is suddenly ignited at point
H on the track when the hottest stellar layers reach T8 ≈ 1. These layers are
strongly degenerate, which makes the pressure of matter to be weakly depen-
dent on temperature. In these conditions, helium ignition is initially unstable.
This is the so-called helium �ash. Helium burning ignition leads to an energy
release that increases the temperature11 but, since the EOS is weakly dependent
on temperature, the structure is only slightly modi�ed but nuclear reactions are
strongly accelerated. The �ash progressively removes the degeneracy and the
burning tends to stabilise. On a short timescale the object �nds a new, long
lived evolutionary stage called horizontal branch (or HB, corresponding to point
K on the track). Helium is burned stably on the HB and after its exhaustion on
the core, it develops a helium shell burning and evolves to the red region in the
HRD again, now on the Asymptotic Giant Branch or AGB. At these conditions
the star begins simultaneously to su�er mass loss and thermal pulses. Thermal
pulses are due to the interaction between the shells burning hydrogen and helium
and have a timescale of ≈ 105 y, far longer than the timescale in which a sound
wave goes across the star. When the star has lost a large amount of mass, starts
to evolve bluewards to become a carbon-oxygen WD star of 0.541M�.

11At these conditions the pressure is dominated by degenerate, non-relativistic electrons while
the speci�c heat is dominated by the non-degenerate gas of nuclei.
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Figure 8. The evolutionary track of our Sun. For details, see
text. Reprinted from Sackmann, Boothroyd & Kraemer, �Our Sun.
III. Present and Future�, ApJ, 418, 457, 1993, https://ui.adsabs.
harvard.edu/abs/1993ApJ...418..457S, c©AAS. Reproduced with
permission.

https://ui.adsabs.harvard.edu/abs/1993ApJ...418..457S
https://ui.adsabs.harvard.edu/abs/1993ApJ...418..457S
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Figure 9. The structure and composition of the present Sun. The
values used for scaling are Tc = 1.54× 107 K and ρc = 162 g cm−3; also
L = L� and R = R�. These results have been computed by ourselves
employing our stellar code.

It is interesting to discuss the present structure of the Sun. Its main char-
acteristics are shown in Figure (9). Most of the luminosity (dominated by the
PP cycle, although the CNO reactions give some contribution) is released in the
inner 40% of mass. Remarkably, the pro�les of temperature, density and hydro-
gen and helium abundances are monotonous. However, this is not the case for
the pro�le of 3He abundance (enhanced by a factor of 100). This is due to the
di�erences in the Coulomb barriers of the Reactions (31) and (32), compared to
those occurring in the case of Reactions (33) and (34). In the core of the Sun
the temperature is high enough to produce and burn 3He. However this is not
the case in outer layers; there 3He burning is not so e�cient.

8.3. The Evolution of Intermediate Mass Stars

Usually, we consider as intermediate mass stars those objects that ignite helium
in non-degenerate conditions (they do not su�er a helium �ash) and develop a
degenerate carbon oxygen core after helium core exhaustion. This sets the mass
interval for these objects in the range of 1.8 − 2.2 < M/M� < 8 − 9 (Chiosi,
1997).

Typical tracks of intermediate mass stars are shown in Figure (10) and some
relevant characteristics of the models are presented in Table (2).

The ZAMS for stars in this range of masses is at temperatures appreciably
higher than those of lower mass objects. As consequence, they have radiative
outer layers while the deep interior has to be convective to transport the large
amount of energy released by the CNO cycle. Due to the occurrence of convection
in the deep interior, the stars burn the available hydrogen in the entire convective
zone.
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The meaning of points A-I given in Table (2) is presented in Figure (11) for
the case of a 4M� object. This is valid for the rest of the evolutionary tracks
presented in this subsection; notice that all of them have a similar morphology.
Evolution begins at point A that corresponds to the ZAMS, where we set age
to zero. Point B corresponds to the minimum e�ective temperature during core
hydrogen burning MS while point C denotes the end of the latter. From that
stage on, stars develop a shell burning hydrogen and the evolutionary track goes
across the HRD in a relatively short timescale (as compared to MS duration)
becoming red giant (point D). Because of the relative shortness of this timescale,
�nding stars at this stage is not frequent and because of this reason this region
of the HRD is known as the Hertzsprung gap. The star begins to develop a deep
outer convective zone while the core has not reached temperatures of hundred
million Kelvins, necessary to ignite helium, yet. Such ignition occurs when the
stars reach a luminosity maximum (point E). Remarkably, the rise of another
source of energy forces the stars to rearrange to a structure that evolves towards
lower luminosities12 (up to point F). Most of core helium is burnt out in convec-
tive conditions during a loop (from points F to H) in which the star spends an
appreciable timescale. At these conditions, helium core is almost exhausted and
the star develops a deep convective zone and evolves towards higher luminosities
up to the end of the calculation (point I). This is consequence of the outward
motion of the shells burning hydrogen and helium.

After these stages, while the objects are still in the red part of the HRD, the
mentioned shells become closer and closer forcing the stars to undergo thermal
pulses in a way similar as mentioned for the case of low mass objects. However, in
this case the timescale of pulses is at least an order of magnitude shorter (104 y).
Simultaneously, during thermal pulses, stars undergo mass loss. When most of
the hydrogen rich envelope has been lost, the star evolves on a short timescale
(comparable to that of a thermal pulse) to a compact structure reaching e�ective
temperatures much higher than those corresponding to the ZAMS at the same
range of luminosities. Then, the evolutionary track star bends down starting the
pre-WD stage. At this moment the star is composed by a carbon-oxygen core
surrounded by a helium shell that has ≈ 1% of the stellar mass, and an even less
massive outermost hydrogen layer.

8.4. The Evolution of White Dwarfs

As discussed above, WDs represent the �nal state of evolution of low and inter-
mediate mass stars. This kind of objects is very important for asteroseismology
since it is well known that they undergo non-radial pulsations. Because of this
reason, we present some characteristics of these objects when considered as con-
sequence of stellar evolution. Here we shall not discuss the WD composition
in details but consider a very simple case to show the general trend of their
evolution.

In Figure (12) we show a typical set of cooling tracks of WDs for di�erent
masses from rather low (0.3M�) to high (1.2M�) values. Here we have assumed
that all models have the same homogeneous chemical composition of carbon and

12This occurs in a similar way to the case of low mass objects at the onset of the helium �ash.
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Figure 10. Typical HRD for the case of intermediate mass, Solar com-
position stars. The masses corresponding to each evolutionary tracks,
shown in solid blue lines, are indicated in solar units. Lines of con-
stant radii are shown in thin red lines. On the tracks, dots indicate
age intervals. These are of 5 × 107 yr for 3M�, of 2 × 107 yr for 4M�
and of 107 yr for 5M� and 6M�. These tracks have been computed by
ourselves employing our stellar code.
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Table 2. Selected stages of evolution of the intermediate mass stars
presented in Figure (10). Columns indicate the point on the respective
track, the age in million years, the decimal logarithms of the luminosity
in solar units, e�ective temperature and central temperature in Kelvins,
and central density in g cm−3. The last two columns present the central
abundances of hydrogen and helium. For the position of the points A-I
on the tracks, see Figure (11).

3M�

Point Age Log L Log Teff Log Tc Log ρc Xc Yc
A 0.00 1.885 4.093 7.380 1.635 0.7293 0.2568
B 351.75 2.069 3.976 7.462 1.805 0.0417 0.9453
C 359.46 2.157 4.025 7.533 2.207 0.0003 0.9867
D 370.44 1.722 3.712 7.750 4.040 0.0000 0.9871
E 374.48 2.570 3.632 8.042 4.819 0.0000 0.9854
F 389.24 1.808 3.702 8.059 4.448 0.0000 0.8937
G 476.99 1.909 3.701 8.114 4.304 0.0000 0.3333
H 519.99 2.002 3.685 8.231 4.496 0.0000 0.0080
I 523.38 2.933 3.602 8.078 5.980 0.0000 0.0000

4M�

Point Age Log L Log Teff Log Tc Log ρc Xc Yc
A 0.00 2.356 4.176 7.413 1.479 0.7294 0.2566
B 159.32 2.576 4.061 7.491 1.620 0.0485 0.9386
C 163.39 2.656 4.108 7.573 2.035 0.0003 0.9868
D 167.08 2.207 3.697 7.818 3.909 0.0000 0.9871
E 168.07 2.887 3.623 8.075 4.468 0.0000 0.9845
F 177.83 2.333 3.681 8.100 4.120 0.0000 0.7969
G 194.75 2.510 3.708 8.142 4.081 0.0000 0.3384
H 213.84 2.439 3.675 8.239 4.251 0.0000 0.0215
I 214.71 3.200 3.594 8.270 5.713 0.0000 0.0000

5M�

Point Age Log L Log Teff Log Tc Log ρc Xc Yc
A 0.00 2.705 4.236 7.435 1.359 0.7369 0.2492
B 92.13 2.957 4.126 7.517 1.494 0.0466 0.9405
C 94.39 3.026 4.169 7.599 1.956 0.0001 0.9870
D 96.03 2.602 3.682 7.876 3.833 0.0000 0.9871
E 96.46 3.191 3.611 8.095 4.160 0.0000 0.9817
F 102.57 2.735 3.663 8.128 3.921 0.0000 0.7155
G 105.49 2.994 3.828 8.142 3.911 0.0000 0.5459
H 115.84 2.863 3.649 8.303 4.222 0.0000 0.0038
I 118.37 3.602 3.575 8.380 5.777 0.0000 0.0000

6M�

Point Age Log L Log Teff Log Tc Log ρc Xc Yc
A 0.00 2.988 4.282 7.454 1.259 0.7284 0.2576
B 59.70 3.255 4.176 7.536 1.394 0.0469 0.9402
C 61.22 3.321 4.218 7.630 1.823 0.0002 0.9869
D 62.04 2.913 3.668 7.927 3.769 0.0000 0.9871
E 62.27 3.449 3.600 8.110 3.978 0.0000 0.9805
F 66.32 3.068 3.647 8.151 3.762 0.0000 0.6585
G 68.25 3.360 3.919 8.168 3.757 0.0000 0.4755
H 73.50 3.182 3.632 8.323 4.078 0.0000 0.0044
I 74.81 3.912 3.557 8.460 5.927 0.0000 0.0000
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Figure 11. The track corresponding to the 4M� object, indicating
the position of the points A-I on the tracks presented in Figure (10)
whose characteristics are given in Table (2).

oxygen (Xc = Xo = 0.5) representative of the case of intermediate mass WDs and
neglected the presence of lighter elements in their outer layers. At present it is
currently accepted that low mass WDs (M < 0.4M�) are due to binary evolution
and should be made up by helium, while the most massive ones (M & 1.0M�)
are expected to be composed by oxygen, neon and magnesium. In Figure (13)
we show the luminosity evolution of the same set of models. Ages have been set
to zero at the beginning of the tracks shown in Figure (12); so, they correspond
only to cooling evolution.

WDs are simple and well understood objects; so, they can be considered
as cosmic clocks for the stellar population where they belong. Also, the most
massive objects are expected to undergo crystallization. This is expected to
occur when the Coulomb interactions are strong enough. For a one component
plasma it occurs when Γ ≈ 171, where

Γ =

(
Ze
)2

kT 〈ri〉
. (63)

Here Z is the charge of the ions, and 〈ri〉 is the ionic mean distance. Γ is the
ratio between Coulomb and thermal energy. Crystallization changes the speci�c
heat of the WD interior and even releases a latent heat. This has some impact
on the cooling evolution of these objects.
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Figure 12. The evolutionary tracks for carbon-oxygen WDs. We as-
sumed an homogeneous composition of Xc = Xo = 0.5. Solid black
lines are labelled with their corresponding masses given in solar units.
For comparison, we show the ZAMS and constant radii lines. Notice
that, as it is shown in Figure (4), the larger the mass the smaller the
radius. After reaching the maximum luminosity in each track, the WD
cools down with decreasing radius. This is especially noticeable for
the case of low mass objects and nicely accounts for the apparent dis-
crepancy between the theoretical mass radius relation for coldWDs and
observations. These tracks have been computed by ourselves employing
our stellar code.
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Figure 13. The evolution of the luminosity for the WDs considered
in Figure (12). Types of lines are labelled with the corresponding mass
values, given in solar units. The zero age has been set at the beginning
of the tracks shown in Figure (12); so, the evolutionary scale corre-
sponds only to the cooling evolution of the objects. Crystallization is
not included.

8.5. The Evolution of Massive Stars

Usually massive stars refer to objects that end their lives in a catastrophic way
by an implosion and (at least in some cases) a subsequent supernova explosion.
Although they undergo strong mass loss, at the end of their lives they have masses
well above the Chandrasekhar limit. Thus these stars cannot end their lives as
WDs. For this to occur it is usually considered that their initial masses should be
M ≥ 8−9M�. These objects are capable to undergo all the main thermonuclear
burning cycles: hydrogen, helium, carbon, neon, oxygen, and silicon. Due to
their high mass values they are very bright, allowing them to be detected far
from us.

There are few facts that make the evolution of massive stars appreciably
uncertain. Perhaps the most important is that massive stars are not numerous,
and due to their short lives they are di�cult to observe. Another relevant sources
of uncertainty are mass loss, overshooting and rotation.

It is well known that massive stars undergo heavy mass loss. This is de-
tectable in detailed spectroscopic observations from which we can deduce the
value of the mass loss rate Ṁ , which is rather uncertain. If τ is the timescale
of stellar lives and we multiply it by Ṁ we �nd that Ṁτ is comparable to M .
In other words, massive stars lose a non-negligible portion of their masses. This
brings the possibility to detect material that has already undergone nuclear re-
actions emerging at their photospheres.

Overshooting is another phenomenon usually considered in massive stars.
The physical reason for its occurrence is simple. Let us imagine, as discussed
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above, that convection is the upwards and downwards motion of bubbles. It
can be shown that when bubbles reach the position of the convective boundary
indicated by the Schwarzschild criterium what goes to zero is not the velocity but
the acceleration. So, at that position the bubble begins to brake down, moving
beyond the classical boundary. This is still an open problem that has been not
fully solved. So, astronomers use to consider overshooting in a parametric way
in order to �t observational data, in particular the width of the upper MS band
(sacri�cing predictivity). The new parameter is αov which provides the extension
lov of the convective zone beyond the standard edge as lov = αovHP .

Perhaps the most di�cult phenomenon to treat properly is rotation. Rota-
tion is fundamental in binary systems since orbital angular momentum can be
transferred to stars by mass exchange making them to be spin up13. But it is
also important for isolated objects, especially for massive stars that are known
since long ago to be fast rotators (their rotation rate can be a non-negligible frac-
tion of the breakup velocity). Rotation not only makes the �gure of equilibrium
to depart from spherical shape but more importantly, it gives rise to currents
of meridional circulation that advect material, changing the composition of the
stellar interior in a way that does not occur in non-rotating objects. On Earth,
rotation is responsible for the existence of sea currents that advect heat and
modify the weather in a quite noticeable way (due to the Gulf Current, Norway
is not so cold as Alaska or Siberia). The problem is that the equations to handle
shellular rotation (Zahn, 1992) (rotation velocity constant on isobars14) are of
fourth order in space, making it very di�cult from a numerical point of view.

In Figure (14) (Maeder & Meynet, 1987) we show a typical theoretical upper
HRD with the evolution of a set of massive stars. The MS widens forM ≈ 40M�
while for even more massive objects it narrows because of heavy mass loss and
overshooting. After hydrogen core exhaustion, while stars withM . 40M� burn
helium as red objects, those more massive do it in the blue region at the left of
the ZAMS. They are located there since they have lost a large fraction of the
hydrogen rich outer layers, becoming Wolf-Rayet stars.

The evolution of the internal structure of the 60M� object (Maeder &
Meynet, 1987) is presented in Figure (15) where it can be seen the changes
of the surface chemical composition as consequence of the interplay of convec-
tion and mass loss. This is very important, since these abundances should be in
agreement with the predictions of the CNO cycle.

In Table (3) we give some important quantities that describe the evolution of
these massive stars. As in the previous ranges of masses, the main characteristic
is that, since luminosity grows with mass faster than linear, and the fuel available
goes with the mass, the timescale of evolution is a steep decreasing function of
the stellar mass.

13This is the standard mechanism considered for the existence of recycled millisecond pulsars.

14This is considered because the di�usion coe�cient of angular momentum is expected to be
strongly anisotropic: it should be very large in the direction of isobars and much smaller in
vertical direction. See, e.g., Maeder (2009) for further details.
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Figure 14. Typical upper HRD for Solar composition massive stars
with mass loss and overshooting. Hatched areas indicate hydrogen core
burning stage (MS band), and core helium burning as red objects for
M ≤ 40M� but as blue for more massive ones (to the left of the ZAMS).
Here the parameter of MLT is αmlt = 1.5 and for overshooting it has
been assumed αov = 0.3. For further details see text. Reprinted from
Maeder & Meynet, A&A, 182, 243, reproduced with permission c©ESO.
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Figure 15. The internal evolution of a 60M� object subject to mass
loss and overshooting. Tilted hatch indicates active nuclear burning,
vertical lines denote the presence of a gradient of chemical composition,
whereas curls depict convective zones. The upper solid line indicates
the mass coordinate of the photosphere. Notice that due to mass loss,
nuclearly processed material emerges to the stellar surface and should
be detected by observations. Reprinted from Maeder & Meynet, A&A,
182, 243, reproduced with permission c©ESO.
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Table 3. Selected stages of evolution of the massive stars presented
in Figures (14) and (15). Columns indicate di�erent important evolu-
tionary stages: A, B, C, and D correspond to the conditions near the
ZAMS, hydrogen core exhaustion, core helium ignition, and its exhaus-
tion, respectively. We give the age in million years, the mass in solar
units, the logarithm of the mass loss rate in solar masses per year, the
logarithm of the luminosity in solar units, the logarithm of the e�ective
temperature given in Kelvins, and the central abundances of hydrogen,
helium and carbon (Y Cc).

20M�
Point Age M Log Ṁ Log L Log Teff Xc Yc Y Cc
A 0.24 19.996 -7.844 4.643 4.552 0.692 0.288 0.0001
B 8.79 19.098 -6.448 5.064 4.438 0.000 0.980 0.0002
C 8.82 19.084 -6.085 5.147 3.980 0.000 0.979 0.0007
D 10.06 14.311 -5.280 5.339 3.601 0.000 0.000 0.1167

40M�
Point Age M Log Ṁ Log L Log Teff Xc Yc Y Cc
A 0.21 39.899 -6.345 5.374 4.652 0.684 0.295 0.0001
B 4.79 32.357 -5.286 5.679 4.375 0.000 0.980 0.0002
C 4.80 31.777 -3.924 5.825 3.673 0.000 0.976 0.0008
D 5.43 9.975 -4.553 5.404 5.268 0.000 0.000 0.0977

60M�
Point Age M Log Ṁ Log L Log Teff Xc Yc Y Cc
A 0.17 59.757 -5.864 5.731 4.693 0.685 0.295 0.0001
B 3.71 42.999 -5.157 5.999 4.583 0.000 0.981 0.0002
C 3.72 42.959 -5.000 6.034 4.267 0.000 0.980 0.0003
D 4.32 21.384 -4.553 5.928 5.313 0.000 0.000 0.0432

120M�
Point Age M Log Ṁ Log L Log Teff Xc Yc Y Cc
A 0.12 119.456 -5.398 6.254 4.739 0.685 0.294 0.0001
B 2.92 80.916 -5.114 6.449 4.720 0.000 0.980 0.0002
C 2.94 80.724 -4.551 6.511 4.503 0.000 0.979 0.0005
D 3.45 64.019 -4.553 6.552 5.292 0.000 0.000 0.0124
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9. Concluding Remarks

In these lectures we have presented a brief description of the most important
characteristics of stellar evolution in order to provide a basis for the understand-
ing of the properties of the most frequently studied stellar pulsators. In doing so,
we have made a description of the main physical ingredients that play a central
rôle in stars and then, the fundamental characteristics of the process of stellar
evolution.

It is important to remark that in this work we have not been able to refer
to many important processes that occur in stars, that are relevant for a correct
understanding of these objects. For example we did not describe semiconvection
and di�usion that are also important for the determination of the internal chem-
ical pro�les. We have only made a brief reference to binary evolution and did
not quote the neutron capture processes that are considered as responsible for
the existence of elements heavier than those of the iron peak in Nature. Most of
them are described in the textbooks cited in the Introduction. Also, we did not
discuss the solar neutrino emission.

We hope that this work will be useful for the reader that intends to enter
in the exciting realm of stellar astronomy.

The author wants to acknowledge the SOC of this School for inviting him
to deliver these lectures. Also, he wants to acknowledge Dr. Gabriel Ferrero for
his help in the preparation of Figure (1).

This work has made use of the VizieR catalogue access tool, CDS, Stras-
bourg, France (DOI: 10.26093/cds/vizier). The original description of the VizieR
service was published in 2000, A&AS 143, 23.
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Abstract.

We present the problem of low amplitude, adiabatic non-radial
oscillations starting from �rst principles. We describe the perturba-
tions imposed to the models, assuming that its non-perturbed struc-
ture is spherical. Then, we restrict ourselves to the case of adiabatic
oscillations, presenting the equations written in terms of the Dziem-
bowski variables. We describe a numerical method for solving these
equations based on �nite di�erences and apply it for the simple case
of polytropic spheres. A computer code based on this algorithm is
available at the web page of the school. This method can be easily
generalised for computing the case of low amplitude, non-adiabatic,
non-radial pulsations.
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1. Introduction

In this lecture we shall present the problem of low amplitude, adiabatic
non-radial stellar oscillations starting from �rst principles. We shall derive
the equations that describe these oscillations and also present a numerical
scheme to solve them. Because these are low amplitude oscillations, they
are linear in the amplitude of the perturbation but non-linear with respect
to the eigenfrequency. This is a classical problem treated in the books
presented by Cox (1980) and Unno et al. (1989) and more recently by
Aerts et al. (2010).
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The remainder of this work is organised as follows. In Section (2),
starting from �rst principles, we derive the equations of non-radial oscil-
lations corresponding to a non-rotating model in hydrostatic and thermal
equilibrium. In Section (3) we restrict ourselves to the case of adiabatic
oscillations and write the equations in the Dziembowski variables. Then, in
Section (4) we present a �nite di�erences algorithm devised to solve these
equations including some comments on how to construct an initial approx-
imate solution to be relaxed by iterations. In Section (5) we apply this
algorithm to the particularly simple case of polytropic spheres. Finally, in
Section (6) we give some general comments about the applicability of this
method to the case of non-adiabatic oscillations and also to compute the
oscillations of realistic stellar models.

2. The Equations of Oscillations

Let us begin by writing the equations of continuity (1), of Euler (2) (we
neglect viscous stress), conservation of energy (3), Laplace (4), and energy
�ux (5)

∂ρ

∂t
+ ~∇.

(
ρ~v
)

= 0, (1)

ρ

(
∂

∂t
+ ~v. ~∇

)
~v = −~∇P − ρ~∇Φ, (2)

T

(
∂

∂t
+ ~v. ~∇

)
S = −ρ

(
εn + εv

)
− ~∇. ~F , (3)

∇2Φ = 4πGρ, (4)

~F = −K~∇T = − 4ac

3κρ
T 3~∇T. (5)

The symbols have their usual meaning: ρ is the density, ~v is the velocity,
P is the pressure, Φ is the gravitational potential, G is the gravitational
constant, T is the temperature, S is the entropy, εn (εν) is the energy

release (loss) due to nuclear reactions (neutrino emission), ~F is the energy
�ux, K is the conductivity, a is the radiation constant, c is the velocity of
light and κ is the opacity. For simplicity here we shall ignore convection.

In the case of non-rotating objects in hydrostatic and thermal equilib-
rium these equations reduce to
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dP

dr
= −GMr

r2
ρ, (6)

dMr

dr
= 4πr2ρ, (7)

dLr
dr

= 4πr2ρ(εn − εν), (8)

dT

dr
= −3κρ

4ac

1

T 3

Lr
4πr2

, (9)

where Mr is the mass enclosed by a sphere of radius r and Lr = 4πr2F is
the luminosity emerging from its surface.

There are two ways of considering perturbations to any attribute of
the stellar interior, these are the Eulerian and Lagrangian perturbations.
At a given point the attribute changes from f0(~r) to f(~r, t) (Equation 10)
due to an Eulerian perturbation

f(~r, t) = f0(~r) + f
′
(~r, t). (10)

If a portion of the star undergoes a displacement ~ξ = ~r − ~r0, the attribute
changes from f0(~r0) to f(~r, t) due to a Lagrangian perturbation (Equa-
tion (11))

f(~r, t) = f0(~r0) + δf(~r0, t). (11)

These formulations are related by Equation (12)

δf(~r, t) = f
′
(~r, t) + ~ξ. ~∇f0(~r). (12)

We shall consider that the non-perturbed structure is at rest, in hy-
drostatic and thermal equilibrium (so ~v = 0) and write the perturbed
equations to the lowest order. These are

∂ρ
′

∂t
+ ~∇.

(
ρ0~v
)

= 0, (13)

ρ0
∂~v

∂t
+ ~∇P ′ + ρ0~∇Φ

′
+ ρ

′ ~∇Φ0 = 0, (14)

ρ0T0
∂

∂t

(
S
′
+ ~ξ. ~∇S0

)
=
[
ρ
(
εn − εν

)]′
− ~∇. ~F ′ , (15)

∇2Φ
′
= 4πGρ

′
, (16)

~F ′ = −K0
~∇T ′ −K ′ ~∇T. (17)

If the non-perturbed structure is spherically symmetric, we have ρ0 =
ρ0(r), T0 = T0(r), Φ0 = Φ0(r), etc. We apply a perturbation considering



48 Omar G. Benvenuto

that all quantities are proportional to exp (iσt). Then, the operator ∂
∂t

can be replaced by iσ and the perturbations are written as ~ξ = (ξr, ξθ, ξφ),

where the normal part is ~ξ⊥ = (0, ξθ, ξφ). Also, it is convenient to de�ne
the normal part of the gradient and the Laplacian operators as

~∇⊥ =
1

r

(
0,
∂

∂θ
,

1

sin θ

∂

∂φ

)
, (18)

∇2
⊥ =

1

r2 sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
. (19)

(20)

It is straightforward to verify that the angular part of the equations
of motion are diagonal in the base of the spherical harmonics, de�ned as

Y m
` (θ, φ) = (−1)(m+|m|)/2

[
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

]1/2
P
|m|
` (cos θ)eimφ (21)

where P
|m|
` (cos θ) are the associated Legendre polynomials that ful�l the

di�erential equation

d

dµ

[
(1− µ2)

dPm
` (µ)

dµ

]
+

(
`(`+ 1)− m2

1− µ2

)
Pm
` (µ) = 0, (22)

where µ = cos θ. Let us remind the fundamental property that spherical
harmonics are orthogonal and normalised∫ 2π

0

∫ π

0

Y ∗
`′ ,m′

(θ, φ)Y`,m(θ, φ) sin θdθdφ = δ`,`′δm,m′ . (23)

Let us write the perturbation as

~ξ =

[
ξr(r), ξh(r)

∂

∂θ
,
ξh(r)

sin θ

∂

∂φ

]
Y m
` (θ, φ)eiσt. (24)

Applying it, together with the thermodynamic relation

δρ

ρ
=

1

Γ1

δP

P
−∇ad

ρT

P
δS (25)

where

∇ad =
∂ log T

∂ logP

∣∣∣∣
S

, (26)
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and

Γ1 =
∂ logP

∂ log ρ

∣∣∣∣
S

, (27)

we �nd the equations of motion

1

ρ

dP
′

dr
+

g

ρc2s
P
′
+
(
N2 − σ2

)
ξr +

dΦ
′

dr
= g∇ad

ρT

P
δS,(28)

1

r2
d

dr

(
r2ξr

)
+

1

Γ1

d lnP

dr
ξr +

(
1− L2

`

σ2

)
P
′

ρc2s
− `(`+ 1)

σ2r2
Φ
′
= ∇ad

ρT

P
δS,(29)

1

r2
d

dr

(
r2
dΦ
′

dr

)
− `(`+ 1)

r2
Φ
′ − 4πGρ

(
P
′

ρc2s
+
N2

g
ξr

)
= −4πG∇ad

ρ2T

P
δS,(30)

K
dT
′

dr
= −F ′r −K

′ dT

dr
,(31)

iσρTδS =
[
ρ
(
εn − εν

)]′
− 1

r2
d

dr

(
r2F

′

r

)
− `(`+ 1)

r2
KT

′
.(32)

There,

L2
` = `(`+ 1)

c2s
r2
, (33)

N2 = −gA = g

(
1

Γ1

d lnP

dr
− d ln ρ

dr

)
(34)

are the Lamb and Brunt-Väisälä frequencies, respectively. Also
c2s = PΓ1/ρ is the adiabatic velocity of sound, and g = GMr/r

2 is the
acceleration of gravity.

3. The Adiabatic Oscillations

We shall restrict ourselves to the case of adiabatic oscillations. So, we
assume that δS = 0 and the equations are

1

ρ

dP
′

dr
+

g

ρc2s
P
′
+
(
N2 − σ2

)
ξr +

dΦ
′

dr
= 0, (35)

1

r2
d

dr

(
r2ξr

)
+

1

Γ1

d lnP

dr
ξr +

(
1− L2

`

σ2

)
P
′

ρc2s
− `(`+ 1)

σ2r2
Φ
′
= 0, (36)

1

r2
d

dr

(
r2
dΦ
′

dr

)
− `(`+ 1)

r2
Φ
′ − 4πGρ

(
P
′

ρc2s
+
N2

g
ξr

)
= 0. (37)



50 Omar G. Benvenuto

If we neglect the perturbations on the gravitational potential (Cowling
approximation), it is possible to make a simple qualitative analysis usually
called �Local Analysis�. Let us assume that the coe�cients of the oscillation
equations are far smoother than the eigenfunctions. If we assume that they
are proportional to exp (ikrr), it can be shown that

k2r =
(σ2 − L2

`)(σ
2 −N2)

c2sσ
2

. (38)

For the mode to be oscillating, it has to ful�l σ2 > L2
` and σ2 > N2, or

σ2 < L2
` and σ

2 < N2, see below, Figure (8).

Let us de�ne the variables

y1 =
ξr
r

; y2 =
1

gr

(
P
′

ρ
+ Φ

′
)

; y3 =
1

gr
Φ
′
; y4 =

1

g

dΦ
′

dr
. (39)

These correspond to

ξr = ry1; P
′
= ρgr(y2 − y1); Φ

′
= gry3;

dΦ
′

dr
= gry4 (40)

Then, we arrive to the Dziembowski's form of the equations of adiabatic
oscillation

x
dy1
dx

=
(
Vg − 3

)
y1 +

[
`(`+ 1)

C1ω2
− Vg

]
y2 + Vgy3, (41)

x
dy2
dx

=
(
C1ω

2 − A∗
)
y1 +

(
A∗ − U + 1

)
y2 − A∗y3, (42)

x
dy3
dx

=
(
1− U

)
y3 + y4, (43)

x
dy4
dx

= UA∗y1 + UVgy2 +

[
`(`+ 1)− UVg

]
y3 − Uy4. (44)

Here there appear the auxiliary variables that describe the e�ects of
stellar structure on the oscillations and also the dimensionless frequency.
These are
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Vg =
V

Γ1

= − 1

Γ1

dln P

dln r
=
gr

c2s
, (45)

U =
dln Mr

dln r
=

4πρr2

Mr

, (46)

C1 =

(
r

R

)3(
M

Mr

)
, (47)

A∗ = −rA =
r

g
N2 =

1

Γ1

dln P

dln r
− dln ρ

dln r
, (48)

ω2 = σ2 R
3

GM
. (49)

The inner boundary conditions can be found taking into account that
V → 3, U → 0, A∗ → 0. The conditions are

C1ω
2

`
y1 − y2 = 0, (50)

`y2 − y4 = 0. (51)

The other two equations necessary to close the system are imposed on
the outer layers of the star. There we have Vg → Vg(x = 1); U → 0;
A∗ → A∗(x = 1). The conditions are

(`+ 1)y3 − y4 = 0, (52)[
1 +

(
`(`+ 1)

ω2
− 4− ω2

)
1

V

]
y1 − y2 +[

1 +

(
`(`+ 1)

ω2
− `− 1

)
1

V

]
y3 = 0. (53)

Due to the linearity of these equations with respect to the dependent
variables yi, they do not provide the amplitude of the oscillations. Then,
we have to add an arbitrary normalisation condition that is usually taken
at the stellar surface as y1(r = R) = 1.

4. A Finite Di�erences Method of Solution

Let us now consider a method for solving these equations. This has been
presented by Córsico & Benvenuto (2002) and is a generalisation of the
scheme presented by Kippenhahn et al. (1967) to compute stellar evolution.
The equations of low amplitude, adiabatic non-radial oscillations have the
form
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dyi
dx

= fi(y1, y2, y3, y4, ω), i = 1, ..., 4. (54)

We shall divide the star in several concentric layers and write these
equations in �nite di�erences. We shall de�ne the values of the dependent
variables as yi,j where the �rst subscript indicates the variable and the
second denotes the point at which it is evaluated. Among the variety of
possible ways to adopt (for further details see, e.g., Press et al. 1992), we
shall employ

Gj
i =

yi,j+1 − yi,j
xj+1 − xj

− fi
(
y1,j+ 1

2
, y2,j+ 1

2
, y3,j+ 1

2
, y4,j+ 1

2
, ω
)

= 0;

i = 1, · · · , 4; j = 1, · · · , N − 1 (55)

where

yi,j+ 1
2

=
yi,j + yi,j+1

2
. (56)

Also, the boundary conditions Bi = 0, i = 1, 2, 3 (outer) and Ci =
0, i = 1, 2 (inner) are written in a similar way.

Notice that these equations are local with respect to the eigenmodes,
since their derivatives are dependent on their values at the same point. The
eigenvalue is �non-local� in the sense that it is present in these equations
regardless where you are computing the derivatives.

To solve the di�erence equations let us employ a Newton-Raphson
technique. We have to provide an approximate solution of a particular os-
cillation mode and improve it by successive iterations. So, the algorithm is
devised to �nd the corrections necessary for the initially proposed solution
to be relaxed to an accurate solution of the mode, fully consistent with the
stellar structure of the non-perturbed model.

Notice that while the Equations (41)-(44) and (50)-(53) are linear in
the functions yi, they are non-linear with respect to the eigenfrequency.

∂Bk

∂y1,1
δy1,1 + · · ·+ ∂Bk

∂y4,1
δy4,1 +

∂Bk

∂ω
δω = −Bk; k = 1, 2, 3, (57)

∂Gj
i

∂y1,j
δy1,j + · · ·+ ∂Gj

i

∂y4,j
δy4,j +

∂Gj
i

∂y1,j+1
δy1,j+1 + · · ·+ ∂Gj

i

∂y4,j+1
δy4,j+1+

∂Gj
i

∂ω
δω = −Gj

i ; i = 1, . . . , 4; j = 1, 2, . . . , N − 1,
(58)

∂Cm
∂y1,N

δy1,N + · · ·+ ∂Cm
∂y4,N

δy4,N +
∂Cm
∂ω

δω = −Cm; m = 1, 2, (59)
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These expressions can be written as a matrix equation. This is a sparse
matrix (most of the elements are zero) which, with the exception of the
�rst and last blocks, has the non-zero elements in blocks of four rows and
eight columns. The �rst block can be written as



∂B1

∂y1,1
. . . . . . ∂B1

∂y4,1
0 0 0

∂B2

∂y1,1
. . . . . . ∂B2

∂y4,1
0 0 0

∂B3

∂y1,1
. . . . . . ∂B3

∂y4,1
0 0 0

∂G1
1

∂y1,1
. . . . . .

∂G1
1

∂y4,1

∂G1
1

∂y1,2

∂G1
1

∂y2,2

∂G1
1

∂y3,2
...

. . .
...

...
...

...
...

. . .
...

...
...

...
∂G1

4

∂y1,1
. . . . . .

∂G1
4

∂y4,1

∂G1
4

∂y1,2

∂G1
4

∂y2,2

∂G1
4

∂y3,2


·



δy1,1
δy2,1
δy3,1
δy4,1
δy1,2
δy2,2
δy3,2

 =



0 −∂B1

∂ω
−B1

0 −∂B2

∂ω
−B2

0 −∂B3

∂ω
−B3

− ∂G1
1

∂y4,2
−∂G1

1

∂ω
−G1

1

...
...

...
...

...
...

− ∂G1
4

∂y4,2
−∂G1

4

∂ω
−G1

4


·

[
δy4,2
δω
1

]
.

(60)
Introducing the auxiliary vectors U, V, and W, their �rst seven com-

ponents are de�ned by



δy1,1
δy2,1
δy3,1
δy4,1
δy1,2
δy2,2
δy3,2

 =



U1 V1 W1

U2 V2 W2
...

...
...

...
...

...
...

...
...

...
...

...
U7 V7 W7


·

[
δy4,2
δω
1

]
(61)

and are the solution of the matrix equation



∂B1

∂y1,1
. . . . . . ∂B1

∂y4,1
0 0 0

∂B2

∂y1,1
. . . . . . ∂B2

∂y4,1
0 0 0

∂B3

∂y1,1
. . . . . . ∂B3

∂y4,1
0 0 0

∂G1
1

∂y1,1
. . . . . .

∂G1
1

∂y4,1

∂G1
1

∂y1,2

∂G1
1

∂y2,2

∂G1
1

∂y3,2
...

. . .
...

...
...

...
...

. . .
...

...
...

...
∂G1

4

∂y1,1
. . . . . .

∂G1
4

∂y4,1

∂G1
4

∂y1,2

∂G1
4

∂y2,2

∂G1
4

∂y3,2


·



U1 V1 W1

U2 V2 W2
...

...
...

...
...

...
...

...
...

...
...

...
U7 V7 W7


=



0 −∂B1

∂ω
−B1

0 −∂B2

∂ω
−B2

0 −∂B3

∂ω
−B3

− ∂G1
1

∂y4,2
−∂G1

1

∂ω
−G1

1

...
...

...
...

...
...

− ∂G1
4

∂y4,2
−∂G1

4

∂ω
−G1

4


.

(62)
The other components of the auxiliary vector are de�ned by



54 Omar G. Benvenuto

 δy4,j
δy1,j+1

δy2,j+1

δy3,j+1

 =

 U4j V4j W4j

U4j+1 V4j+1 W4j+1

U4j+2 V4j+2 W4j+2

U4j+3 V4j+3 W4j+3

 · [ δy4,j+1

δω
1

]
, (63)

and computed by the expression
αj1

∂Gj
1

∂y1,j+1

∂Gj
1

∂y2,j+1

∂Gj
1

∂y3,j+1

αj2
∂Gj

2

∂y1,j+1

∂Gj
2

∂y2,j+1

∂Gj
2

∂y3,j+1

αj3
∂Gj

3

∂y1,j+1

∂Gj
3

∂y2,j+1

∂Gj
3

∂y3,j+1

αj4
∂Gj

4

∂y1,j+1

∂Gj
4

∂y2,j+1

∂Gj
4

∂y3,j+1

·
 U4j V4j W4j

U4j+1 V4j+1 W4j+1

U4j+2 V4j+2 W4j+2

U4j+3 V4j+3 W4j+3

 =


− ∂Gj

1

∂y4,j+1
−βj1 −γ

j
1

− ∂Gj
2

∂y4,j+1
−βj2 −γ

j
2

− ∂Gj
3

∂y4,j+1
−βj3 −γ

j
3

− ∂Gj
4

∂y4,j+1
−βj4 −γ

j
4

 ,
(64)

where we have employed the auxiliary vectors

αji =
∂Gj

i

∂y4,j
+ U4j−3

∂Gj
i

∂y1,j
+ U4j−2

∂Gj
i

∂y2,j
+ U4j−1

∂Gj
i

∂y3,j
, (65)

βji =
∂Gj

i

∂ω
+ V4j−3

∂Gj
i

∂y1,j
+ V4j−2

∂Gj
i

∂y2,j
+ V4j−1

∂Gj
i

∂y3,j
, (66)

γji = Gj
i +W4j−3

∂Gj
i

∂y1,j
+W4j−2

∂Gj
i

∂y2,j
+W4j−1

∂Gj
i

∂y3,j
. (67)

With these expressions we reduce the information necessary to solve for
the corrections and �nd the last block of the matrix. This is written as

αN−11
∂GN−1

1

∂y1,N

∂GN−1
1

∂y2,N

∂GN−1
1

∂y3,N

∂GN−1
1

∂y4,N
βN−11

αN−12
∂GN−1

2

∂y1,N

∂GN−1
2

∂y2,N

∂GN−1
2

∂y3,N

∂GN−1
2

∂y4,N
βN−12

αN−13
∂GN−1

3

∂y1,N

∂GN−1
3

∂y2,N

∂GN−1
3

∂y3,N

∂GN−1
3

∂y4,N
βN−13

αN−14
∂GN−1

4

∂y1,N

∂GN−1
4

∂y2,N

∂GN−1
4

∂y3,N

∂GN−1
4

∂y4,N
βN−14

0 ∂C1

∂y1,N

∂C1

∂y2,N

∂C1

∂y3,N

∂C1

∂y4,N

∂C1

∂ω

0 ∂C2

∂y1,N

∂C2

∂y2,N

∂C2

∂y3,N

∂C2

∂y4,N

∂C2

∂ω


·


δy4,N−1
δy1,N
δy2,N
δy3,N
δy4,N
δω

 =


−γN−11

−γN−12

−γN−13

−γN−14

−C1

−C2

 .

(68)
This expression allows us to �nd the corrections to the quantities cor-
responding to the central part of the model together with that for the
eigenfrequency. Employing them in Equations (61) and (63) backwards we
�nd the rest of the corrections that are applied to the proposed solution.

ω → ω + δω, (69)

yi,j → yi,j + δyi,j; i = 1, · · · , 4; j = 1, · · · , N (70)
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This completes an iteration that can be repeated up to when correc-
tions are small enough.

The way of solving for the modes and the eigenfrequency is similar to
the method we employ for computing binary stellar evolution. In this case,
the �non-local� quantity is the mass transfer rate, that is computed simul-
taneously with the structure of the donor star. For details see Benvenuto
& De Vito (2003).

4.1. Approximate Solution: the Discriminant

In order to look for the approximate solutions of the equations we have
to explore the frequency interval of interest. To do so, we relax one of
the physical boundary conditions (not the normalisation condition!) and
look for the solution of oscillation equations for a given frequency. If at
a given frequency the boundary condition is ful�lled, it corresponds to an
approximate eigenmode, otherwise not. So, we store in the memory of the
computer the approximate frequency and modes to be improved iteratively,
as described above.

4.2. On the Distribution of Mesh Points

One of the most di�cult problems on �nite di�erence solution of di�erential
equations is how to choose the distribution of mesh points. Here we cannot
present a detailed discussion of this issue but we shall give few general
comments.

Usually it is considered that a good description of a function is attained
if it is de�ned on a large number of mesh points. However, obviously,
this cannot be very large because both, the memory and the speed of
the computer are �nite. For example, it can be assumed that a function is
well represented if between neighbouring mesh points it does not vary more
than (say) 1% of the maximum amplitude in all the interval. In general, the
solution of the equations of oscillations will have several nodes. Evidently,
these functions do need more mesh points to be well de�ned as compared
with the zoning necessary for stellar evolution. Thus, in general a good
zoning for stellar evolution calculations may be completely inadequate for
pulsation calculations.

5. A Particular Case: Polytropic Spheres

Let us now apply the above described numerical scheme to a particular
case. If the equation of state is of the form P = Kρ1+1/n, where K is a
constant, the structure of the object is a polytropic sphere. If we de�ne
ρ = ρcθ

n and r = αξ where ρc is the central density, θ is the polytropic

function, and α2 = (n+1)K
4πG

ρ
1/n−1
c , we �nd the Lane-Emden equation
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Figure 1. The density pro�le for polytropic spheres of n = 3
and 4.

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn. (71)

The boundary conditions are θ(ξ = 0) = 1, dθ/dξ|ξ=0 = 0 and the
surface is de�ned by θ(ξ = ξs) = 0. The radius of the sphere is R = αξs
and its mass is given by M = 4πα3ρc(−ξ2sdθ/dξ)ξ=ξs .

All the results shown below have been computed with the codes pro-
vided during the school1, politro.for and NR_AD_School.for. First you
have to compile and execute politro.for. After choosing the polytropic
index the code will provide a �le with the structure coe�cients necessary
to compute the oscillations. NR_AD_School.for will ask you for the value
of ` of the oscillations and the range of values of the square of the dimen-
sionless frequency ω2. Automatically this code will store the discriminant
and the modes in the required range.

Compilations and executions are fairly standard:
> gfortran xxx.for -o xxx
> ./xxx

Analytical solutions of Equation (71) are known only for n=0, 1, and
5. Let us here consider the cases of n = 3 and 4 and that the gas has
an adiabatic coe�cient Γ1 corresponding to the monoatomic case: Γ1 =
5/3. For this case, the density pro�les are shown in Figure (1) and the
coe�cients given by Equations (49) are shown in Figure (2).

Having available these coe�cients, we can now compute the modes.
The �rst step is to calculate the discriminant. In this case we have em-
ployed Equation (52) for such purpose. The results are shown in Figure (3).

1For interested readers, the codes can be obtained from the author upon request.
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Figure 2. The coe�cients given by Equations (45)-(48) that
describe the structure of the polytropic spheres of n = 3 and 4.
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Figure 3. Discriminant for ` = 2 modes for polytropic spheres
of n = 3 and 4.

The modes correspond to the frequencies at which the discriminant is zero.
Modes for both polytropic indices are shown in Figures (4)-(7).

Another interesting way to have a global view of the properties of the
modes is to employ the so-called �Propagation Diagram� which is based on
Equation (38). This is an useful tool for polytropes, but also for stellar
models in general. The Propagation Diagrams for the cases of polytropic
spheres of n = 3 and 4 are shown in Figure (8).

6. Conclusions

In this lecture we have presented the classical problem of low amplitude,
adiabatic non-radial pulsations. We have derived the equation of oscilla-
tions starting from �rst principles. The formulation is based on the Equa-
tions (41)-(44) and boundary conditions (50)-(53) written in the Dziem-
bowski variables.

In order to solve the equations we have presented a �nite di�erences
scheme. In order to look for the modes we have relaxed one of the boundary
conditions and considered the values of this condition as a discriminant.
When it has the physical value, this frequency corresponds to an oscillation



Low Amplitude Adiabatic Non-radial Stellar Oscillations 59

Figure 4. The �rst p-modes and the f-mode (without nodes)
for a n = 3 polytropic sphere

mode. Then, we imposed the correct boundary condition and computed
the eigenmodes and eigenfrequencies by relaxation.

Although here we have restricted ourselves to the case of adiabatic
oscillations, the numerical scheme can be immediately generalised to the
case of non-adiabatic oscillations. In this case we have to handle not four
real but six complex �rst order di�erential equations.

In order to compute the modes of a simple stellar model, we applied it
to the case of polytropic spheres with indices n=3 and 4. This is straight-
forward and is the �rst step we recommend to do before trying to compute
the oscillatory modes of realistic stellar models. Of course, the numerical
scheme is adequate for such a purpose if you are able to provide the co-
e�cients given by Equations (45)-(48). In the case of realistic models a
point to be taken with care is that the derivative of the density has to be
computed numerically since it is not provided by the equations of stellar
evolution.

The author wants to acknowledge the SOC of this School for inviting
him to deliver these lectures.
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Figure 5. The �rst g-modes and the f-mode (without nodes)
for a n = 3 polytropic sphere. Here the normalisation condition
has been imposed at the centre of the model.

Figure 6. p-modes for a n = 4 polytropic sphere
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Figure 7. g-modes for a n = 4 polytropic sphere. Here the
normalisation condition has been imposed at the centre of the
model.
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Figure 8. The propagation diagrams for ` = 2 oscillations for
polytropic spheres of n = 3 and 4 (corresponding to the left and
right panels respectively). The squares of the characteristic Lamb
(L`, de�ned in Equation (33)) and Brunt-Väisälä (N , de�ned in
Equation (34)) frequencies are represented with dashed and dash
dot lines respectively. Horizontal lines correspond to the frequen-
cies and �lled dots represent the coordinates at which each mode
has a node in the y1 eigenfunction. For the case of n = 3 there are
p-modes oscillating with nodes in the outer resonant cavity and
g-modes oscillating in the inner one, separated by the so-called
fundamental mode that has no node. On the contrary, for the
case of n = 4 there also exist the two resonant cavities, but the
p and g modes are not so clearly separated since there are modes
with nodes in both cavities. These �gures can be qualitatively
understood in terms of the local analysis based on Equation (38).
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Abstract.

As an introduction to the subject basic properties of stellar pulsations
are derived using simple intuitive estimates. With respect to a theoreti-
cal description of pulsating stars the physical principles governing stellar
structure and dynamics are discussed. The associated equations are sim-
pli�ed by the assumption of spherical symmetry thus providing the basis
for the study of radial pulsations.
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1. Preliminary Considerations

Variability of stars, observed either by photometric or spectral methods, can
originate from various e�ects. It could be caused by eclipses in binaries, by disks
in cataclysmic variables, by nuclear explosions in Novae and Supernovae, by star
spots associated with magnetic �elds, or by oscillations of the star around its
equilibrium, i.e., by stellar pulsations, which are the subject of the current series
of lectures. In order to distinguish them from other sources of variability we
de�ne them in a �rst attempt as an intrinsic property of a single, isolated star
exhibiting (possibly multiple) periodic variability of its e�ective temperature,
radius and luminosity.

Pulsating stars are of fundamental importance for astrophysics, since the
properties of the pulsations allow for reliable estimates of stellar parameters,
and certain classes of pulsating stars (e.g., Cepheids) can be used for distance
determinations. In asteroseismology direct information on stellar structure and
interiors is obtained from the spectrum of observed oscillation frequencies. His-
torically, the hypothesis, that stellar pulsations or oscillations may be responsible
for observed stellar variability was �rst raised by Shapley in 1914 and consid-
ered theoretically by Eddington in 1918 (see Cox, 1980). For further reading we
recommend the article by Ledoux & Walraven (1958) and the textbooks by Cox
(1980) and Unno et al. (1989).

In order to identify the stellar parameters governing the observed timescale
of pulsation-induced variability we consider the various timescales occurring in
stellar physics.
The mechanical or dynamical timescale is determined by the acceleration of a
mass element under the action of gravity. Denoting the radial position of a

64
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mass element with r, the time with t, the mass of the star with M , and the
gravitational constant with G, we estimate the acceleration as

d2r

dt2
∝ −GM

r2
(1)

Using the stellar radius R as an estimate for r and the dynamical timescale τDyn
as an estimate for t we are left with

R

τ2Dyn
∝ GM

R2
(2)

Solving for τDyn we obtain

τDyn ∝ (Gρ)−1/2 (3)

where ρ denotes the mean density of the star. Thus the dynamical timescale of a
star is entirely determined by its mean density and varies between milliseconds
for compact neutron stars and some 100 days for giants.

The thermal (Kelvin - Helmholtz) timescale τKH of a star may be de�ned
by the time needed to radiate its thermal energy content Ethermal at its current
luminosity L:

τKH ∝
Ethermal

L
(4)

Due to the virial theorem the thermal and gravitational potential energy EGrav
of a star are of the same order of magnitude (Ethermal ∝ EGrav ∝ GM2

R ) and we
obtain

τKH ∝
GM2

LR
∝ 107years

(M/M�)2

(L/L�)(R/R�)
(5)

Similar to the thermal timescale the nuclear timescale τnuc of a star may
be de�ned by the time needed to radiate its nuclear energy content Enuc at its
current luminosity L. Since the nuclear energy content of a star is proportional
to its mass we are left with

τnuc ∝
Enuc
L
∝ M

L
∝ 1010years

M/M�
L/L�

(6)

Comparing the nuclear, thermal and mechanical timescales of a star with
the observed timescale of stellar pulsations of at most a few hundred days we
conclude that the mechanical timescale is relevant for stellar pulsations. More-
over, the physics governing pulsations should be dominated by the mechanics of
the system. The pulsation - induced variability of stellar parameters is usually
small compared to their mean time independent values. Thus pulsations may be
regarded as oscillations around the mechanical (hydrostatic) equilibrium, where
the perturbed equilibrium is readjusted on the dynamical timescale.

Oscillations require a restoring force. In a star, two types of restoring forces
are available: Stellar matter is compressible and the perturbation of the density
of a mass element will be associated with a perturbation of its pressure implying
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forces which counteract the density perturbation and tend to restore the un-
perturbed con�guration. In a continuous medium this restoring force gives rise
to the existence of sound waves. Since pressure is the restoring force, standing
sound waves in a star are denoted as p - modes. Buoyancy is the origin of a
second restoring force. For its action it requires a non vanishing acceleration

(the gravity g in a star) and a �nite density gradient dρ
dr . An aspherical displace-

ment of a mass element will then induce a restoring buoyancy force proportional

to the gravity and the density gradient (∝ g · dρdr ). In a continuous medium it
leads to the existence of gravity waves. Since gravity is an essential ingredient
in buoyancy, standing gravity waves in a star are denoted as g - modes.

With respect to the geometry we distinguish radial from nonradial pulsa-
tions. For radial pulsations the perturbations preserve the spherical geometry
of the hydrostatic star, whereas nonradial pulsations allow for non - spherically
deformed perturbations. Since buoyancy cannot act in spherical geometry, radial
g - modes do not exist and radial pulsations do consist of p - modes only. For
the same reason pure gravity modes - should they exist - have to be nonradial.
Nonradial pulsations contain both g - and p - modes, where the strict classi�ca-
tion of a given mode as g - or p - mode is not always meaningful, since there are
modes with a mixed character, where both restoring forces act simultaneously.

On the basis of the hypothesis that stellar pulsations may be regarded as
standing waves in a star we would like to provide a simple intuitive estimate of
their pulsation periods, restricting ourselves to considering radial acoustic p -
modes. As a guidance the analogue of an organ pipe as an acoustic resonator
turns out to be helpful. The acoustic frequency spectrum of an organ pipe is
obtained by considering the wavelengths λ of standing waves which a pipe with
length L and rigid boundaries at the top and at the bottom (corresponding to
nodes of standing acoustic waves) allows for. If n − 1 denotes the number of
nodes within the pipe of the standing sound wave, λ/2 can take the in�nite
number of discrete values L/n. Assuming now that a star can be regarded as
an acoustic resonator similar to an organ pipe with nodes of standing waves at
the center (r = 0) and the surface (r = R) we identify the length L of the organ
pipe with the stellar radius R and obtain from λ ∝ L/n by analogy as an order
of magnitude estimate for the wavelengths of standing sound waves in a star
λ ∝ R/n. Wavelengths and associated frequencies ν are in both cases related by

νλ = cSound (7)

where the sound speed cSound is given by

c2Sound = γp/ρ ∝ p/ρ (8)

p, ρ and γ denote pressure, density and the adiabatic exponent, respectively.
Thus the spectrum of acoustic frequencies of an organ pipe is estimated as

ν = cSound/λ ∝ n
√
p/ρ

L
(9)

For the (radial) acoustic spectrum of a star we obtain the estimate

ν = cSound/λ ∝ n
√
p/ρ

R
(10)
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For a star, the ratio p/ρ can be estimated from the condition of hydrostatic
equilibrium:

1

ρ

∂p

∂r
= −GMr

r2
(11)

where Mr denotes the mass within a sphere of radius r. Using p
R as an estimate

for ∂p
∂r , M as an estimate for Mr and R as an estimate for r we obtain

1

ρ

p

R
∝ GM

R2
(12)

Thus the ratio p/ρ is given by

p

ρ
∝ GM

R
(13)

and the radial acoustic spectrum of a star (see equation 10) is estimated as

ν ∝ n
√
GM

R3
∝ n

√
Gρ (14)

Replacing the frequency by the pulsation period Π = 1/ν we obtain for the radial
fundamental mode (n = 1):

Π
√
ρ = constant (15)

Equation 15 represents the period - density - relation for the radial fun-
damental mode of stellar pulsations. Note that according to our estimates the
density occurring in equation 15 has to be regarded as the mean density of the
star. A familiar form of the period - density - relation (see, e.g., Cox, 1980)
reads:

Π(ρ/ρ�)1/2 = Q with 0.03d . Q . 0.12d (16)

The variation of Q is caused by the in�uence on the pulsation period of
di�erent stellar structures, which was not accounted for by our simple estimates.
Note that the period - density relation is consistent with our initial �ndings that
the timescale of pulsations is given by the dynamical timescale (equation 3).

2. Physics of Stellar Structure and Dynamics

For continuous systems like stars two kinds of descriptions are common. In the
Eulerian framework �xed positions in space are considered, position vectors ~r
and time t are used as independent variables. Accordingly, the Eulerian time
derivative ∂

∂t |~r is de�ned at constant position vector ~r. In the Lagrangean frame-
work �xed mass elements are considered, the initial position vector ~r0 of a mass
element and the time t are used as independent variables. Accordingly, the La-
grangean time derivative d

dt |~r0 is de�ned at constant initial position vector ~r0 of
the mass element considered. Note that in the Lagrangean description the actual
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position vector ~r = ~r(~r0, t) is a (time dependent) dependent variable. For the
de�nition of the velocity ~v the Lagrangean description is adopted:

~v =
d~r

dt
(17)

Using the relation

d

dt
=

∂

∂t
+ (~v∇) (18)

between the Lagrangean and the Eulerian time derivatives the acceleration d~v
dt

can be written as

d~v

dt
=
∂~v

∂t
+ (~v∇)~v (19)

Depending on which of the equivalent descriptions is more convenient for
the particular situation studied, either the Eulerian or the Lagrangean approach
(or even a combination of them) is used.

The physical principles governing stellar structure and dynamics comprise
the conservation laws for mass, momentum and energy together with Poisson's
equation for the gravity and a prescription for the energy transport. In its
di�erential form mass conservation is described by the continuity equation

dρ

dt
+ ρ∇~v = 0 (20)

Alternatively, the continuity equation in the Eulerian approach may be written
as

∂ρ

∂t
+∇(ρ~v) = 0 (21)

By de�nition, an incompressible motion is characterized by a vanishing La-

grangean time derivative of the density (dρdt = 0). According to equation 20
this condition is equivalent to ∇~v = 0, i.e., to a vanishing divergence of the
velocity �eld. Incompressibility and homogeneity, which would correspond to a
vanishing gradient of the density (∇ρ = 0), must not be confused.

In the absence of viscosity and magnetic �elds, momentum conservation is
described by Euler's equation:

ρ
d~v

dt
= ρ(

∂~v

∂t
+ (~v∇)~v) = −∇p− ρ∇φ (22)

The left hand side of equation 22 describes the inertial forces in either the La-
grangean or the Eulerian framework, the �rst term on the right hand side corre-
sponds to forces induced by pressure gradients, the second refers to the gravita-
tional force where φ is the gravitational potential. It is determined by Poisson's
equation:

4 φ = 4πGρ (23)

The solution of Poisson's equation 23 may be represented as:



Basic Physics of Stellar Pulsations 69

φ(~r, t) = −G
∫

ρ(~x, t)

|~x− ~r|
d3x (24)

Based on the �rst law of thermodynamics energy conservation may be ex-
pressed as

ρ
du

dt
= −p∇~v + ρε−∇~F (25)

where u, ~F and ε denote the speci�c internal energy, the heat �ux and the
speci�c energy generation rate, respectively. The variation with time of the
internal energy of a mass element is given by the mechanical work done by the
element (�rst term on the r.h.s. of equation 25), the (nuclear) energy generation
within the element (second term) and the heat deposited in it, expressed in terms
of the divergence of the heat �ux (third term). With V = 1/ρ, the continuity
equation 20 and some basic thermodynamics two terms of equation 25 may be
rearranged to yield:

ρ
du

dt
+ p∇~v = ρ(

du

dt
+ p

dV

dt
) = ρT

ds

dt
(26)

where T and s denote temperature and speci�c entropy, respectively. Thus an
alternative form of energy conservation (equation 25) is given by

ρT
ds

dt
= ρε−∇~F (27)

In stellar interiors energy transport is usually approximated by a di�usion
type process, where the heat �ux is proportional and opposite to the temperature
gradient:

~F = −D∇T (28)

The particular transport process enters through the di�usion coe�cient D.
In the optically thick regime (e.g., in stellar interiors) radiation transport can be
treated in the di�usion approximation with D given by:

D =
4ac

3κρ
T 3 (29)

where a, c and κ are the radiation constant, the speed of light and the Rosseland
mean of the opacity, respectively.

If nuclear processes are of interest, the system of equations has to be com-
plemented by the variation with time of the chemical composition (Xi denotes
the mass fraction of nucleus i) induced by nuclear reactions:

dXi

dt
=
dXi

dt
(Xj , p, T ) (30)

The speci�c dependence on chemical composition, pressure and temperature of
the reaction rate entering equation 30 is provided by nuclear physics.

A closure of the system of equations given above is accomplished by the
prescription of a thermal and a caloric equation of state (EOS) provided by
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thermodynamics and atomic physics. Depending on the thermodynamic basis
adopted it may formally be written as, e.g.,

p = p(ρ, T ) or ρ = ρ(p, T ) or s = s(p, T ) (31)

Moreover, the Rosseland mean of the opacity κ = κ(p, T ) and the nuclear energy
generation rate ε = ε(p, T ) have to be provided by atomic and nuclear physics
either in parametrized or in tabular form.

The problem posed by the system of equations introduced here consists
of their application to stellar structure and dynamics and their mathematical
solution. Concerning the latter, a numerical treatment of the equations with
subsequent numerical simulations seems to be an appropriate strategy. However,
concerning stellar pulsations reliable nonlinear 3D simulations satisfying the nec-
essary accuracy requirements are still not yet feasible. Therefore the theoretical
study of stellar pulsations still relies on simpli�cations and approximations.

3. Radial Pulsations

As an attempt to reduce the mathematical complexity of the problem we sim-
plify its geometry by assuming spherical symmetry, i.e., we restrict our studies
to radial pulsations. However, according to the preliminary considerations in
section 1 this assumption does not only simplify the mathematics, it also leads
to a loss of physical e�ects, such as buoyancy. As a consequence, e.g., g - modes
are excluded in this approach. Therefore the interpretation and generalisation of
results based on a radial analysis has to be dealt with caution. For convenience,
we introduce spherical polar coordinates (r, θ, ϕ) and adopt the Lagrangean de-
scription. Then the mass Mr contained within a sphere of radius r is given by
(subscripts 0 refer to initial quantities in the Lagrangean sense):

Mr =

∫
0

r(r0,t)

ρ(r′, t)4πr′
2
dr′ =

∫
0

r0

ρ(r0
′)4πr0

′2dr0
′ = Mr0 (32)

With this de�nition the conservation of mass is expressed as

Mr = Mr0 ;
dMr

dt
= 0 (33)

and Mr = Mr0 is chosen as a new Lagrangean variable replacing r0. Thus Mr

(and t) have become independent Lagrangean variables, whereas r(Mr, t) is a
dependent variable. The relation between r andMr is obtained by di�erentiation
of the de�nition of Mr (equation 32):

∂Mr

∂r
= 4πr2ρ or

∂r

∂Mr
=

1

4πr2ρ
(34)

Note that in equation 34 the derivatives have to be interpreted in the Lagrangean
sense. In spherical symmetry the gravitational force occurs in Euler's equation

22 in terms of the gradient ∂φ
∂r of the potential φ. It is determined by Poisson's

equation 23 which in spherical symmetry is given by:
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∂2φ

∂r2
+

2

r

∂φ

∂r
=

1

r2
∂

∂r
(r2

∂φ

∂r
) = 4πGρ (35)

By multiplication of equation 35 with r2 and integration we obtain:

r2
∂φ

∂r
=

∫
4πGρr2dr = GMr (36)

For the gravity we are thus left with

∂φ

∂r
=
GMr

r2
(37)

Note that the particular choice of the Lagrangean variables allows for an algebraic
representation of the gravitational force. No further integration is required.

To present the equations governing radial pulsations in their conventional
form, some transformations and de�nitions have to be introduced: The radial
component Fr of the heat �ux is replaced by the luminosity L(r) through

L(r) = 4πr2Fr (38)

Choosing pressure p and temperature T as the thermodynamic basis we write
the di�erential of the speci�c entropy s = s(p, T ) as

Tds = cpdT −
δ

ρ
dp (39)

where cp denotes the speci�c heat at constant pressure and the coe�cients α and
δ of the di�erential form of the equation of state ρ = ρ(p, T ) are de�ned as

α =
∂ log ρ

∂ log p

∣∣∣∣
T

; δ = − ∂ log ρ

∂ log T

∣∣∣∣
p

(40)

The transformation from r to Mr as an independent variable is accomplished by
using equation 34 in the form

∂

∂r
= 4πr2ρ

∂

∂Mr
(41)

We are thus left with the following system of equations describing the spherically
symmetric structure and dynamics of a star ( ∂∂t refers to the Lagrangean time
derivative):
Mass conservation

∂r

∂Mr
=

1

4πr2ρ
(42)

Momentum conservation

∂p

∂Mr
= −GMr

4πr4
− 1

4πr2
∂2r

∂t2
(43)

Energy conservation
∂L

∂Mr
= ε− cp

∂T

∂t
+
δ

ρ

∂p

∂t
(44)
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Energy transport
∂T

∂Mr
= − 3κL

64π2acr4T 3
(45)

Change of chemical composition by nuclear processes

∂Xi

∂t
=
∂Xi

∂t
(Xj , p, T ) (46)

This system of �ve partial di�erential equations needs to be closed by the pre-
scription of an equation of state and by specifying the nuclear energy generation
rate ε and the opacity κ. We note that energy transport processes other than ra-
diation di�usion are not taken into account in equation 45. In particular, energy
transport by convection is disregarded.

Three terms involving a time derivative occur in equations 42 � 46, each
of them being related to one of the characteristic stellar timescales discussed in
section 1: The acceleration term in equation 43 is associated with the dynamical
timescale, the time derivative of the entropy in equation 44 (expressed by the
time derivatives of temperature and pressure, respectively) with the thermal
timescale and the time derivatives of the mass fractions in equation 46 with the
nuclear timescale.

Stellar evolution relies on hydrostatic equilibrium (∂
2r
∂t2

= 0) and is governed
by the nuclear and the thermal timescales. Thus the description of standard
stellar evolution is included in equations 42 � 46 as the special case of vanishing
acceleration.

On the other hand, the study of pulsations requires deviations from hydro-

static equilibrium (∂
2r
∂t2
6= 0), whereas on the timescale of pulsations the nuclear

changes of the chemical composition may be ignored. Thus nuclear processes, i.e.,
equations 46 are usually ignored and the chemical composition in terms of the
mass fractions Xi is assumed to be constant on the dynamical timescale of pul-
sations. Thus pulsations are governed by the dynamical and thermal timescales.
Under certain conditions for pulsations even the change of the entropy (i.e., its
time derivative in equation 44) may be neglected. Then the energy equations
can be disregarded altogether and we are left with a mechanical system, where
pulsations are completely determined by the dynamical timescale.
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Abstract.

We discuss the general strategy of the theoretical description of stel-
lar stability and pulsations. The initial construction of a spherically sym-
metric stellar model in hydrostatic equilibrium is followed by considering
small perturbations around the equilibrium. Both for radial and nonradial
disturbances the linear equations governing these small perturbations are
derived. The in�uence of the thermal and the dynamical timescale on the
properties of linear pulsations is discussed in detail. For unstable stellar
models the last step of the general approach consists of following the evo-
lution of an instability into the nonlinear regime by numerical simulation.

Key words: asteroseismology � hydrodynamics � radiative transfer
� stars: oscillations

1. General Strategy

In the present paper, we will adopt the same notation as in the previous lecture in
this volume on �Theoretical Description and Basic Physics of Stellar Pulsations�
(hereafter referred to as paper I). Moreover, we shall make use of the results
obtained there.

Most of the pulsating stars maintain their mean properties (such as lumi-
nosities and e�ective temperatures) while pulsating. Moreover, the pulsational
variability of the stellar parameters is in general small compared to their station-
ary mean values. Thus pulsations may be regarded as �small� time dependent
perturbations superimposed on a stationary star in hydrostatic equilibrium. For
a theoretical treatment these �ndings suggest to start with a hydrostatic stellar
model subsequently considering time dependent perturbations of the equilibrium,
which are small compared to the equilibrium values. As a consequence, in an
expansion around the equilibrium only terms linear in the perturbations will be
signi�cant while higher order terms in the perturbations can be neglected. Thus
the approach will lead to a system of linear equations for the perturbations.

The construction of a (spherical) hydrostatic stellar model as the �rst step
of the analysis can be accomplished by standard stellar evolution calculations
leading to models with the desired (or observed) parameters. Alternatively,
for prescribed (observed) stellar parameters hydrostatic envelope models can be
calculated by integration of the equation of mass conservation (see equation 42
of paper I):

73
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∂r

∂Mr
=

1

4πr2ρ
(1)

the equation of hydrostatic equilibrium (the equation of momentum conservation
with vanishing acceleration, see equation 43 of paper I):

∂p

∂Mr
= −GMr

4πr4
(2)

and the equation of energy transport (see equation 45 of paper I):

∂T

∂Mr
= − 3κL

64π2acr4T 3
(3)

For prescribed chemical composition, luminosity L, e�ective temperature Teff
and mass M the integration of equations 1 � 3 can be performed as an initial
value problem starting at the photosphere. Initial values for r and p are obtained
from Stefan - Boltzmann's law and an estimate for the photospheric pressure,
respectively (see, e.g. Kippenhahn & Weigert, 1990). In case of energy transport
by convection equation 3 needs to be modi�ed. In a stellar envelope nuclear
processes do not occur (ε = 0). As a consequence, the chemical composition
is constant and integration of the stationary form of the equation of energy
conservation (see equation 44 of paper I) shows the luminosity to be constant
there. We are thus left with the three ordinary di�erential equations 1 � 3
posing an initial value problem.

Assuming that a hydrostatic stellar model has been constructed either by
stellar evolution calculations or by envelope integrations in the way discussed
above, any physical variable Q, where Q stands for, e.g., pressure, temperature
and density, will be known for this model as a function of Mr. Hereafter, quan-
tities referring to time independent hydrostatic models will be indicated by the
subscript 0, i.e., for further studies we can assume the physical variables Q0(Mr)
of a hydrostatic model to be given. Considering spherically symmetric time de-
pendent perturbations around the hydrostatic equilibrium we may decompose a
variable Q(Mr, t) in the following way:

Q(Mr, t) = Q0(Mr) +Q1(Mr, t) (4)

where the perturbation Q1 (like Q) depends on both Mr and t. In the next
step, the decomposition 4 is inserted in the system of equations describing the
spherically symmetric structure and dynamics of a star (equations 42 � 45 of
paper I) to obtain a system of equations for the perturbations Q1. In accordance
with the general strategy we shall assume in this procedure that Q0 satis�es
equations 42 � 45 of paper I separately and that the perturbations Q1 are
�small� compared to their hydrostatic counterparts Q0:

Q1

Q0
� 1 =⇒

(
Q1

Q0

)2

� Q1

Q0
(5)

Thus terms of higher order than linear in the perturbations can be neglected
and we are left with a system of linear equations for the perturbations Q1. As
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a consequence of the linearisation of the problem achieved in this way the solu-
tions of the linear di�erential equations may be superposed and multiplied by
an arbitrary complex constant to yield further solutions of the system. Thus the
amplitude of the perturbations remains a free parameter and cannot be deter-
mined in the linear approach. If pulsation amplitudes are to be determined, a
nonlinear treatment of the problem is inevitable.

Should a stellar model turn out to be unstable according to the linear treat-
ment its �nal fate might be determined � as a last step of the general strategy �
by following the evolution of the instability into the nonlinear regime by numer-
ical simulation of the complete set of nonlinear equations (equations 42 � 45 of
paper I). This approach would then also allow for a determination of pulsation
amplitudes, if �nite amplitude pulsations are the result of a stellar instability.

2. Linear Radial Stability and Pulsations

In this section the equations governing �small� spherically symmetric perturba-
tions of a star in hydrostatic equilibrium will be discussed. The analysis and nota-
tion closely follows the paper by Baker & Kippenhahn (1962), see also Gautschy
& Glatzel (1990). Adopting the general strategy described in section 1 a hydro-
static model is assumed to be provided in terms of the physical variables Q0(Mr).
The variables Q are decomposed according to equation 4 and inserted into equa-
tions 42 � 45 of paper I. Assuming Q1

Q0
� 1 all terms are expanded around Q0

retaining only stationary terms and expressions linear in the perturbations. For
illustration, the linearisation of the expression 1

r2
(r is a dependent variable) and

the equation of state ρ = ρ(p, T ) is performed explicitly:

1

r2
=

1

r02(1 + r1/r0)
2 =

1

r02
(1− 2r1/r0) =

1

r02
− 2

r1
r03

(6)

ρ = ρ0 + ρ1 = ρ(p, T ) = ρ(p0 + p1, T0 + T1)

= ρ(p0, T0) +

(
∂ρ

∂p

∣∣∣∣
T

)
0

p1 +

(
∂ρ

∂T

∣∣∣∣
p

)
0

T1 +O(p1
2, T1

2)

= ρ0 +

(
∂ρ

∂ log p

∣∣∣∣
T

)
0

p1/p0 +

(
∂ρ

∂ log T

∣∣∣∣
p

)
0

T1/T0

(7)

Hence

ρ1/ρ0 =

(
∂ log ρ

∂ log p

∣∣∣∣
T

)
0

p1/p0 +

(
∂ log ρ

∂ log T

∣∣∣∣
p

)
0

T1/T0 = α0p1/p0 − δ0T1/T0 (8)

Taking into account that the variables Q0 satisfy the time independent version
of equations 42 � 45 of paper I separately the linearisation process �nally yields
the following system of equations:
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Mass conservation

∂r1
∂Mr

= − 2

4πρ0r03
r1 −

1

4πr02ρ0
(α0p1/p0 − δ0T1/T0) (9)

Momentum conservation

∂p1
∂Mr

= 4
GMr

4πr05
r1 −

1

4πr02
∂2r1

∂t2
(10)

Energy conservation

∂L1

∂Mr
= −cp0

∂T1
∂t

+
δ0
ρ0

∂p1
∂t

+ ε0(εp0p1/p0 + εT0T1/T0) (11)

Energy transport

∂T1
∂Mr

=
T0
p0

∂p0
∂Mr

∇0

(
L0

L0
rad

L1/L0 − 4r1/r0 + κp0p1/p0 − (3− κT0)T1/T0
)
(12)

where ∇0, εp, εT , κp and κT are de�ned as:

∇0 =

∂ log T0
∂Mr

∂ log p0
∂Mr

(13)

εp =
∂ log ε

∂ log p

∣∣∣∣
T

; εT =
∂ log ε

∂ log T

∣∣∣∣
p

(14)

κp =
∂ log κ

∂ log p

∣∣∣∣
T

; κT =
∂ log κ

∂ log T

∣∣∣∣
p

(15)

On the timescale of pulsations the change of chemical composition by nuclear
processes can be ignored (see section 46 of paper I). Therefore equation 46 of
paper I has been disregarded in deriving equations 9 � 12. Equation 12 is not
only valid for energy transport by radiation di�usion. In the form given, it is also
valid, if energy transport is partially provided by convection and if the coupling
between convection and pulsation can be treated according to the �frozen - in
approximation� (see, e.g., Baker & Kippenhahn, 1965). The latter consists of
assuming the convective �ux to be constant during pulsations, i.e., the pertur-
bation of the convective �ux is required to vanish. It is applied, if convection
contributes a minor fraction to the entire energy transport, and holds, if the
turnover timescale of convection is much larger than the pulsation timescale. In
the presence of convection L0

rad refers to the energy transported by radiation
di�usion, whereas L0 corresponds to the total �ux consisting of both the radia-
tive and the convective �ux. (In the absence of convection we have L0

rad = L0.)
Within the �frozen - in approximation� the consideration of convection implies
the coe�cient L0

L0
rad ≥ 1 of L1/L0 in equation 12.

For the numerical treatment of equations 9 � 12 we introduce relative per-
turbations Q1/Q0 by
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ζ = r1/r0 ; t = T1/T0 ; p = p1/p0 ; l = L1/L0 (16)

For improvement of the numerical resolution in the outer stellar envelope we
change the independent variable from Mr to log p0 by the transformation pro-
vided by the equation of hydrostatic equilibrium:

∂p0
∂Mr

= −GMr

4πr04
(17)

∂

∂Mr
= − GMr

4πp0r04
∂

∂ log p0
(18)

Hereafter, the derivative with respect to log p0 will be denoted with ′. Times will
be measured in units of the dynamical timescale, i.e., we introduce a dimension-
less time τ by:

τ = t
√

4πGρ̄ (19)

where ρ̄ is the mean density of the star. We thus arrive at a system of dimen-
sionless di�erential equations appropriate for a LNA analysis, i.e., a numerical
analysis of radial linear nonadiabatic stellar stability and pulsations (see also
Baker & Kippenhahn, 1962):
Mass conservation

ζ ′ = c4(3ζ + αp− δt) (20)

Momentum conservation

p′ = −p− 4ζ + c3
∂2ζ

∂τ2
(21)

Energy conservation

l′ = c1

(
1

∇ad
∂t

∂τ
− ∂p

∂τ

)
(22)

Energy transport

t′ = ∇0

(
L0

L0
rad

l − 4ζ + κpp− (4− κT )t

)
(23)

In equations 20 � 23 the dependent variables ζ, p, l and t depend on log p0 (or
Mr) and τ , whereas their coe�cients are completely determined by the hydro-
static model, i.e., they depend on log p0 (orMr) only. Since the risk of confusion
is small, subscripts 0 at the coe�cients have been omitted and will be omitted
hereafter. As the in�uence on stellar pulsations of nuclear processes is expected
to be extremely small (see section 3 of paper I) terms associated with the nuclear
energy generation rate ε have been disregarded in equation 22. The coe�cient
∇ad occurring in equation 22 and de�ned as

∇ad =
∂ log T

∂ log p

∣∣∣∣
s

(24)
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is without any reference to a particular stellar model completely determined by
the equation of state as the logarithmic derivative of temperature with respect to
pressure at constant entropy (hence the subscript �adiabatic�). The dimensionless
coe�cients ci are obtained as

c3 =
4πr0

3ρ̄

Mr
(25)

c4 =
p0r0
GMrρ0

∝ 1/r0
2 for r0 −→ 0 (26)

c1 =
4πr0

4p0
2δ0

MrL0ρ0

√
4πρ̄

G
∝ 1/r0

2 for r0 −→ 0 (27)

Except for c1 which will be discussed in detail later all coe�cients in equations
20 � 23 are of order unity. For r0 → 0 c1 and c4 diverge like ∝ 1/r0

2 (since
Mr ∝ r03 and L0 ∝ r03 for r0 → 0).

Since the coe�cients of the linear partial di�erential system 20 � 23 do not
depend on time it can be transformed into an ordinary di�erential system by
separating the time dependence of the dependent variables Q according to

Q(log p0, τ) = Q̂(log p0) exp(iστ) (28)

where the complex constant σ = σr + iσi denotes the dimensionless complex
eigenfrequency or eigenvalue. Thus time derivatives in equations 20 � 23 reduce

to a multiplication with iσ ( ∂∂τ → iσ and ∂2

∂τ2
→ −σ2) and the time dependence

in terms of the common coe�cient exp(iστ) is eliminated from equations 20 �

23 leaving an ordinary di�erential system for the dependent variables Q̂ with σ
as a free parameter and log p0 as the independent variable. In the following we
shall consider only the time independent parts Q̂ of the dependent variables and
omit superscriptsˆfor simplicity. Rewriting the time dependence of Q as

Q = Q̂ exp(iσrτ − σiτ) = Q̂ exp(−σiτ)(cos(σrτ) + i sin(σrτ)) (29)

we observe that a �nite real part of the eigenfrequency implies an oscillation with
frequency σr, whereas a �nite imaginary part is associated with exponential decay
(for σi > 0) or exponential growth (for σi < 0) of a perturbation. Thus positive
imaginary parts of the eigenfrequency indicate stability, negative imaginary parts
correspond to an instability of the star.

The solution of equations 20 � 23, now regarded as a forth order ordinary
di�erential system with σ as a free parameter, requires the speci�cation of four
boundary conditions. At the photosphere (r0 = R) being the outer boundary of
the stellar models Stefan - Boltzmann's law

L = σSBR
2T 4

eff (30)

holds by de�nition (σSB is Stefan - Boltzmann's constant). Its linearised form
in terms of the dependent variables of equations 20 � 23 is obtained as

l = 2ζ + 4t for r0 = R (31)
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A second boundary condition at r0 = R might be given by the requirement of a
force - free outer boundary implying the pressure perturbation to vanish there:

p = 0 for r0 = R (32)

The photosphere is the boundary of the stellar model, but not the physical
outer boundary of the star. As a consequence, there is a variety of physically
reasonable requirements which might be imposed as boundary conditions at r0 =
R. In particular the condition 32 is a matter of debate, since the pressure at
the photosphere is �nite. Thus the outer boundary conditions at r0 = R are
ambiguous and the in�uence of their choice on the results of the LNA analysis
needs to be studied.

For complete stellar models the inner boundary corresponds to the center
of the star (r0 = 0). Rewriting the equations 20 and 22 of mass and energy
conservation as

1

c4
ζ ′ = 3ζ + αp− δt (33)

1

c1
l′ = iσ

(
1

∇ad
t− p

)
(34)

we deduce from equations 33 and 34 that the coe�cients of the derivatives vanish
at the inner boundary r0 = 0, since according to equations 26 and 27 1

c4
∝ r0

2

and 1
c1
∝ r02 holds for r0 → 0. Thus r0 = 0 is a singular point of the di�erential

system enabling diverging solutions for r0 → 0. For the physical interpretation
regular solutions are needed, i.e., contributions from singular solutions have to be
excluded by appropriate boundary conditions. If ζ, p, l, t and their derivatives
are required to remain �nite at r0 = 0, the l.h.s. of equations 33 and 34 vanishes
there. As a consequence, also the r.h.s. of equations 33 and 34 has to vanish at
r0 = 0 implying two boundary conditions for the di�erential system 20 � 23 at
r0 = 0:

3ζ + αp− δt = 0 ; r0 = 0 (35)

t−∇adp = 0 ; r0 = 0 (36)

r0 = 0 is a regular singular point of the di�erential system 20 � 23 providing
the boundary conditions 35 and 36, if the solutions of the system (for physical
reasons) are required to remain regular. We emphasize that (in contrast to the
outer boundary) these boundary conditions are unambiguous. Any other choice
will induce singular contributions to the solutions.

The fourth order di�erential system 20 � 23 together with the two boundary
conditions 31 and 32 at r0 = R, the two boundary conditions 35 and 36 at
r0 = 0 and the free complex parameter σ poses a boundary value problem. In
contrast to initial value problems boundary value problems in general do not
have a solution. However, an adjustment of the free parameter σ such that
a solution of the di�erential equations matches all boundary conditions may be
used to generate a solution of the complete system (di�erential equations together
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with the boundary conditions). Thus the strategy consists of identifying and
determining those values of σ which allow for a solution of the boundary value
problem. (For stellar pulsations there is an in�nite number of discrete values
of σ satisfying this requirement.) According to its mathematical character the
problem discussed is also addressed as boundary eigenvalue problem with σ being
the eigenvalue or eigenfrequency.

3. Local De�nition of Dynamical and Thermal Timescales

The global dynamical and thermal timescales of a star have been introduced in
section 1 of paper I. Here we are interested, whether and how these timescales
may be de�ned in a local way, i.e., not for the entire star but for a thin mass shell
within a star extending between the radii r and r + ∆r. The global dynamical
timescale may be estimated as the time needed by a sound wave to cross the entire
star. Accordingly, its local analogon is the time needed by a sound wave to cross
a mass shell with thickness ∆r. Estimating the sound speed as c2Sound ∝ p/ρ it
is given by:

τDyn ∝ ∆r
√
ρ/p (37)

Similar to the global thermal timescale, the local thermal timescale of a mass shell
with mass ∆m is de�ned as the time needed to radiate its thermal energy content
at the local luminosity, where the thermal energy content might be expressed
as the product of the speci�c heat cp, the temperature T and the mass ∆m.
Rewriting the latter in terms of the density ρ and the volume of the mass shell
we �nally obtain for the local thermal timescale:

τThermal ∝
cpT∆m

L
=
cpTρ4πr2∆r

L
(38)

Both the local dynamical and the local thermal timescale depend on the thickness
∆r of the mass shell considered. Unless there are further arguments how to
choose ∆r, they can be given any value since the choice of ∆r is ambiguous.
Thus the local dynamical and thermal timescales given by equations 37 and 38
are ill-de�ned quantities without any physical relevance. However, their ratio
being independent of ∆r is well de�ned and given by:

τThermal
τDyn

∝ 4πr2ρcpT

L

√
p/ρ (39)

For any stellar model the ratio of the local thermal and dynamical timescale
increases from values of the order of unity (or even below) at the photosphere to
the stellar center by many orders of magnitude. As an example it is shown as a
function of relative radius r/R in Figure 1 for two stellar models having di�erent
masses but the same luminosity L = 7.25 × 105L� and e�ective temperature
Teff = 18600K.
For τThermal/τDyn � 1 the time for a mass element needed to exchange heat
with its surroundings signi�cantly is much longer than any dynamical event such
as, e.g., a sound wave passing the element. As a consequence, the heat content
of the mass element may be considered to be constant in this situation, i.e., the
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Figure 1. The ratio of the local thermal and dynamical timescale as
a function of relative radius r/R for two stellar models with the masses
indicated having the same luminosity L = 7.25 × 105L� and e�ective
temperature Teff = 18600K.
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changes of state of the mass element occur at constant entropy and are adiabatic.
Together with an equation of state this condition implies an algebraic relation
between temperature and pressure and leads to the following linear equation for
the relative perturbations of temperature and pressure:

t−∇adp = 0 (40)

From Figure 1 we conclude that the condition 40 of adiabatic changes of state
is highly satis�ed in the deep interior of a star. For reasons of regularity (see
equation 36) it holds even exactly at the very center (r0 = 0). Thus at su�ciently
deep layers within a star pulsations can be regarded to be adiabatic satisfying the
relation 40. Nonadiabatic e�ects have to be taken into account close to the stellar
surface, where the range in terms of the radial extent of signi�cant deviations
from adiabatic behaviour sensitively depends on the stellar model considered.
For the model with M = 60M� shown in Figure 1 it covers the outermost
≈ 20 per cent of the stellar envelope, whereas the adiabatic relation is a poor
approximation for the major fraction of the envelope of the M = 24M� model.
Accordingly, studies on pulsations based on the adiabatic approximation 40 are
expected to provide results comparable with those of the complete analysis, if
the range of radii with τThermal/τDyn ≤ 1 is su�ciently small. For the M =
24M� model discussed the latter does not seem to hold and a fully nonadiabatic
treatment will be necessary.

Comparing the ratio 39 of the local thermal and dynamical timescales with
the de�nition 27 of the coe�cient c1 we deduce that except for a factor of order
unity the expressions are identical, i.e., c1 occurring in equation 22 as the coef-
�cient of the time derivative of the entropy perturbation is essentially given by
the ratio of the local thermal and dynamical timescales and reaches extremely
high values when the stellar center is approached (see Figure 1). A large value of
c1 (or rather the vanishing of 1/c1 as the coe�cient of l′ in a suitably rewritten
form of equation 22) implies equation 22 to approach singularity with the result
that the time derivative of the entropy perturbation should vanish. Separating
the time dependence according to equation 28 we are left with the �nal con-
sequence that the expression 1

∇ad
t − p is required to vanish when c1 diverges.

In this way large values of c1 naturally lead to adiabatic changes of state and
imply the adiabatic relation 40 to hold without the necessity to impose the condi-
tion of adiabatic changes of state additionally. Thus our physical considerations
concerning the various timescales and their consequences for the properties of
pulsations within a star completely agree with the mathematical analysis of the
perturbation equations. Through the relation between the timescales and the co-
e�cients of the perturbation equations the physical and mathematical approach
implies the same predictions concerning the properties of stellar pulsations.

Motivated by the fact that for many stars the fraction of the envelope with
τThermal/τDyn ≤ 1 is negligible implying adiabatic changes of state for the major
part of the star an approximate treatment of the perturbation problem 20 � 23
consists of requiring the adiabatic relation 40 to be valid for the entire stellar
model. As a consequence the mechanical and the thermal parts of equations
20 � 23 are decoupled and we are left with the mechanical equations of mass
and momentum, where the temperature perturbation is replaced by the pressure
perturbation using the adiabatic relation 40:
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Mass conservation
ζ ′ = c4 (3ζ + (α− δ∇ad)p) (41)

Momentum conservation
p′ = −p− 4ζ − σ2c3ζ (42)

Thus the fourth order boundary eigenvalue problem is reduced to a second order
problem where the (ambiguous) mechanical outer boundary condition 32 remains
unchanged

p = 0 ; r0 = R (43)

and the regularity condition at r0 = 0 implied by c4 ∝ 1/r0
2 for r0 → 0 can either

be read o� directly from equation 41 or is obtained by replacing the temperature
perturbation in equation 35 using the adiabatic relation 40. It is given by

3ζ + (α− δ∇ad)p = 0 ; r0 = 0 (44)

Equations 41 and 42 together with the boundary conditions 43 and 44 describe
linear radial stellar stability and pulsations within the adiabatic approximation.

4. Linear Nonradial Stability and Pulsations

As discussed in section 1 we assume a spherically symmetric hydrostatic stellar
model to be provided in terms of physical variables Q0(Mr). Considering now
nonspherical perturbations around the equilibrium it is more convenient to adopt
an Eulerian description with the position vector ~r as an independent variable
rather than the Lagrangean approach where for spherical symmetryMr was used
as independent variable. Accordingly we express the stationary physical variables
in terms of the radial coordinate r asQ0(r). Adopting spherical polar coordinates
(r, θ, ϕ) any physical variable Q(r, θ, ϕ, t) is � similar to the procedure described
in section 1 � decomposed as

Q(r, θ, ϕ, t) = Q0(r) +Q1(r, θ, ϕ, t) (45)

where Q1 denotes the Eulerian perturbation of Q. (Note that the decomposi-
tion 4 refers to the Lagrangean perturbation of Q.) The decomposition 45 is
then inserted into the equations of mass conservation (equation 21 of paper I),
momentum conservation (equation 22 of paper I) and energy conservation (equa-
tion 27 of paper I), the di�usion equation for energy transport (equations 28 and
29 of paper I) and Poisson's equation for the gravitational potential (equation
23 of paper I). In accordance with the discussion in section 3 of paper I the
variation with time of the chemical composition (see equation 30 of paper I) is
ignored when considering pulsations. In contrast to radial pulsations, where an
appropriate choice of Lagrangean variables together with an analytical integra-
tion supersedes the complete solution of Poisson's equation, the latter needs to
be considered explicitly in the case of nonradial perturbations. In accordance
with the general strategy (see section 1) we assume the stationary variables Q0 to
satisfy the system of equations separately and the perturbations Q1 to be �small�
compared to their hydrostatic counterparts Q0, i.e., we have Q1/Q0 � 1. Ne-
glecting terms of higher order than linear in the perturbations we thus arrive at a
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system of homogeneous linear partial di�erential equations for the perturbations
Q1.

We emphasize that perturbations of a physical variable Q de�ned either in
the Eulerian or Lagrangean approach are di�erent and must not be confused.
Eulerian perturbations (in the following denoted with Q̃) refer to a �xed posi-
tion in space whereas Lagrangean perturbations (in the following denoted with
∆Q) refer to a �xed mass element. The Lagrangean perturbation of the position
vector ~r (a dependent Lagrangean variable) for a �xed mass element (an inde-
pendent Lagrangean variable) is denoted as Lagrangean displacement ∆~r. For
any physical variable Q the Lagrangean and Eulerian perturbations are related
by:

∆Q = Q̃+ ∆~r∇Q0 (46)

Some authors use both Lagrangean and Eulerian perturbations and variables
simultaneously. Therefore it seems useful to note some commutation rules:

d

dt
∆Q = ∆

dQ

dt
;

∂

∂t
Q̃ =

∂̃Q

∂t
; ∇Q̃ = ∇̃Q (47)

d̃Q

dt
=

d

dt
Q̃+ ~̃v∇Q0 (48)

~̃v =
∂

∂t
∆~r + (~v0∇)∆~r − (∆~r∇)~v0 (49)

The system of linear partial di�erential equations for the perturbations Q1

contains the derivatives ∂
∂θ and ∂

∂ϕ only in the combination

∂2

∂θ2
+

1

sin2θ

∂2

∂ϕ2 + cot θ
∂

∂θ
=: ~L2 (50)

Spherical harmonics Ylm(θ, ϕ) with integer harmonic indices l = 0, 1, 2, ... and

m = −l, ..., l are eigenfunctions of the operator ~L2 with eigenvalues l(l + 1):

~L2Ylm = l(l + 1)Ylm (51)

They provide a complete orthonormal system in terms of the variables θ and
ϕ which suggests an expansion of the perturbations Q1 in terms of spherical
harmonics:

Q1(r, t, θ, ϕ) =
∑
l,m

Q̂1lm(r, t)Ylm(θ, ϕ) (52)

Inserting the expansion 52 in the perturbation equations and multiplying them
with Yl′m′ we take advantage of the orthonormality of the spherical harmonics Ylm
thus removing the angular dependence and achieving a separation of the angular
variables θ and ϕ. We are left with a system of partial di�erential equations (with

independent variables r and t only) for the coe�cients Q̂1lm(r, t) containing only
the harmonic degree l as a parameter. As m does not appear explicitly as a
parameter in the equations, the solutions are 2l + 1 - fold degenerate. The
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spherical symmetry of the hydrostatic model described in terms of Q0(r) both
enables the separation of the angular variables by expansion in terms of spherical
harmonics and induces the degeneracy with respect to the harmonic index m.
Finally, a separation of the time dependence of the perturbations Q1 (enabled by
the time independence of Q0) is achieved similar to the radial case (see equation
28) by

Q̂1lm(r, t) =
ˆ̂
Q1lm(r) exp(iωt) (53)

where ω denotes the complex eigenfrequency. Thus the perturbation equations
are reduced to an ordinary di�erential system with r as an independent variable
and the harmonic degree l and the eigenfrequency ω as parameters. Keeping in
mind that its solutions depend on these parameters, superscripts and indices are
usually omitted at the perturbations.

As the main physical and mathematical aspects of the ordinary di�erential
system describing linear nonradial stability and pulsations are similar to those
discussed in connection with the corresponding radial issue (see sections 2 and
3) we shall not explicitly present it here. Rather we shall comment only on the
speci�cs of the nonradial problem and refer to Glatzel & Gautschy (1992) for
further details. As its radial counterpart (equations 20 � 23) the nonradial per-
turbation equations consist of three equations associated with mass, momentum
and energy conservation and one equation related to energy transport. Except
for an additional term in the mass conservation equation which is proportional
to l(l + 1)/σ2 and gives rise to the existence of gravity waves they exhibit the
same structure and properties as the radial perturbation equations 20 � 23.
In contrast to the radial problem Poisson's equation (second order) needs to
be solved explicitly when considering nonradial perturbations which implies two
additional �rst order equations for the perturbation of the potential and its
derivative. Accordingly, nonradial stability and pulsations correspond to a sixth
order boundary eigenvalue problem while radial stability and pulsations lead to
a fourth order problem.

For the sixth order di�erential system three unambiguous boundary condi-
tions are provided at the stellar center by the fact that r = 0 is a regular singular
point of the equations implying a regularity condition for each type of variables
(thermal, mechanical and potential variables). For the numerical treatment a
transformation of variables according to Q → Q/rl is needed (see Glatzel &
Gautschy, 1992) to avoid numerical ambiguities in the formulation of the inner
(r = 0) boundary conditions. At the outer boundary (photosphere) only the
condition involving the potential variables is unique: It is obtained by the re-
quirement that the potential and its derivative is continuously connected to the
vacuum solution of Poisson's equation which decays at in�nity. Similar to the
radial case both the thermal and mechanical boundary conditions at the photo-
sphere are ambiguous, since the photosphere is the outer boundary of the stellar
model but not the physical outer boundary of the star. A possible choice of
boundary conditions consists of assuming Stefan - Boltzmann's law to hold and
the (Lagrangean!) pressure perturbation to vanish there (force - free boundary),
see also equations 31 and 32.
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Abstract.

The linear stability analysis of stellar models poses a linear fourth
or sixth order boundary eigenvalue problem. Methods for its numerical
solution are reviewed, most of which face severe problems, if the ratio of
the thermal and dynamical timescale falls below unity for a signi�cant
fraction of the stellar envelope considered. The extremely robust and
highly accurate Riccati method is introduced and shown to be applicable
to stellar stability problems with success even in these cases of strong
deviations from adiabaticity. Numerical simulations of the evolution of a
stellar instability into the nonlinear regime are still restricted to spherical
geometry. We address the basic requirements for and problems connected
with the simulation of radial pulsations. How violent arti�cial initial per-
turbations may be avoided and the extremely high accuracy requirements
posed by the di�erences between the various energy forms can be met by
strictly conservative numerical schemes is discussed.

Key words: asteroseismology � hydrodynamics � methods: numerical
� stars: mass loss � stars: oscillations

1. Numerical Solution of the Linear Stability Problems

In the present paper, we will adopt the same notation as in the previous lectures
in this volume on �Theoretical Description and Basic Physics of Stellar Pulsa-
tions� and on the �Linear Analysis� (hereafter referred to as papers I and II). We
shall make use of the results obtained there.

1.1. Matrix Methods and Shooting Methods

We consider the boundary eigenvalue problems emerging from the study of lin-
ear stability and pulsations and discussed in sections 2 and 4 of paper II for
radial and nonradial perturbations respectively. They consist of four (radial per-
turbations) or six (nonradial perturbations) homogeneous ordinary di�erential
equations supplemented by two (radial case) or three (nonradial case) homoge-
neous boundary conditions on each end of the integration interval. A solution of
the boundary value problem is accomplished by adjusting the complex parameter
σ properly. The values of σ which allow for a solution are denoted as eigenvalues
(or eigenfrequencies).

87
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The solution of the boundary eigenvalue problems using a matrix method
relies on a discretization of the integration interval by N grid points where xi
denotes the position of grid point i in the integration interval. The value of a
dependent variable u at xi is denoted by ui: ui = u(xi). Derivatives can then
be expressed in terms of {ui} and {xi}. For example, a simple possibility to

represent the derivative du
dx of the variable u would be given by:

du

dx
=
ui+1 − ui
xi+1 − xi

(1)

By the boundary conditions some values of the dependent variables at the bound-
aries of the integration interval are �xed. As a result of this approach we �nally
obtain a linear homogeneous algebraic system of equations which might be writ-
ten as:

A(σ)u = 0 (2)

In equation 2 u is for the radial problem a (4 × 2 × N − 4 × 2) - dimensional
real vector containing all dependent variables {ui}. (For the nonradial problem
it is a (6 × 2 × N − 6 × 2) - dimensional real vector.) The coe�cient 4 (or 6)
stands for the number of dependent continuous variables, i.e., the number of
di�erential equations, the coe�cient 2 accounts for the fact that the variables
are complex. The subtraction of 4×2 (or 6×2) corresponds to the consideration
of the boundary conditions. A is a matrix having the same dimension as u
which contains the information on the hydrostatic stellar model and depends
on the eigenvalue σ (and the harmonic degree l as a parameter). The linear
homogeneous system of equations 2 has a solution, if the determinant of A
vanishes, i.e., if

detA(σ) = 0 (3)

Thus the eigenvalues σ are provided by the zeros of the determinant of the matrix
A.

For the solution of equations 2 and 3 posing a standard problem in linear
algebra a variety of � mainly iterative � numerical algorithms is available. How-
ever, an iterative solution requires initial guesses both for the eigenvalues and
the eigenfunctions which are usually taken from the result of a numerically less
di�cult approximate treatment of the problem, e.g., from the adiabatic approx-
imation. As a consequence, eigensolutions which signi�cantly di�er from their
approximation or do not have a counterpart in the approximation at all, cannot
be identi�ed. Moreover, the convergence of an algorithm towards a pretended
solution does not prove it to be a true solution of equation 2. Whether the pro-
cedure has converged towards a true or a numerically induced spurious solution
is often di�cult to decide. The dimension of the matrix A is proportional to the
number N of the grid points used. Thus the resolution of the method is limited
by the maximum dimension of A, for which the iteration algorithm provides reli-
able results and which can be handled by the available computational device. As
the optimum distribution of grid points depends both on the hydrostatic model
and the eigensolution to be calculated, it is not known a priori. Accordingly, for
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a given number of grid points the resolution will su�er from their unfavourable
distribution.

The solution of the boundary eigenvalue problems using a shooting method
relies on the integration of the di�erential equations as an initial value problem
which guarantees a unique solution for any initial condition (and any value of
the parameter σ). Starting at one of the boundaries, four (radial problem) or
six (nonradial problem) initial conditions have to be speci�ed only half of which
are given. The remaining two (or three) initial conditions in addition to the
eigenvalue σ have to be guessed. Once with these initial conditions (and the
value of σ chosen) the integration (using any standard algorithm for initial value
integration) arrives at the other boundary the solution is compared with the
two (or three) boundary conditions prescribed there. The discrepancy between
the solution and the boundary conditions forms the basis for the iteration of
the unknown initial conditions and the eigenvalue σ until solution and boundary
conditions match.

Shooting methods do not require any estimates for the eigenfunctions. More-
over, the stepsize of the initial value integration can be adapted locally to match
any prescribed accuracy requirement and to resolve any detail of the eigenfunc-
tion and the hydrostatic model. There are no limitations concerning computer
storage and the maximum dimension of any matrices involved. A severe problem
is associated with the iteration of the unknown initial conditions. For bound-
ary eigenvalue problems of higher than second order the ambiguity in the initial
conditions in general introduces the parasitic growth problem, i.e., exponentially
growing particular solutions of the initial value problem induced by improperly
chosen initial conditions will eventually dominate the entire solution and prevent
a solution of the boundary value problem. Thus the numerical instability associ-
ated with parasitic growth caused by ambiguous initial conditions is the reason,
why simple shooting methods in general fail when applied to boundary value
problems of higher than second order. In the next section we shall show how
the ambiguity in the initial conditions can be avoided and, as a consequence, a
numerically stable shooting method is obtained which may be used successfully
to solve high order boundary eigenvalue problems.

1.2. The Riccati Method

The system of di�erential equations governing linear stability and pulsations may
be rewritten in terms of vectors u and v and matrices A, B, C and D as

u′ = Au + Bv

v′ = Cu + Dv
(4)

where u and v are twodimensional (radial perturbations) or threedimensional
(nonradial perturbations) vectors each of them containing two (or three) depen-
dent variables. The elements of the 2× 2 (or 3× 3) matrices correspond to the
coe�cients of the di�erential systems and can be read o� from the equations
directly. They depend on the hydrostatic model, the eigenfrequency σ and � for
nonradial perturbations � on the harmonic degree l. As an example, for radial
perturbations (see equations 20 � 23 of paper II) u and v may be de�ned as
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u =

(
ζ
t

)
v =

(
l
p

)
(5)

The matrix A is then read o� from equations 20 and 23 of paper II as

A =

(
3c4 −δc4
−4∇0 −∇0(4− κT )

)
(6)

The 2× 2 (or 3× 3) complex Riccati matrix R is now de�ned by

u = Rv (7)

Di�erentiating 7 and using 4 and 7 to replace u′, v′ and u we obtain

u′ = R′v + Rv′

Au + Bv = R′v + R(Cu + Dv)

ARv + Bv = R′v + R(CRv + Dv)

(8)

and �nally

(R′ + RCR + RD−AR−B)v = 0 (9)

Since equation 9 must hold for any arbitrary vector v we are left with the Riccati
equation for the (complex) Riccati matrix R:

R′ = B + AR−RD−RCR (10)

Note that equation 10 is a nonlinear matrix di�erential equation involving only
the Riccati matrix and the coe�cient matrices A, B, C and D. The boundary
conditions for the primary linear system 4 can now be rewritten as initial condi-
tions for the integration of the Riccati equation 10. As an example, we consider
the boundary conditions for radial perturbations at r0 = 0 (see equations 35 and
36 of paper II):

3ζ + αp− δt = 0 (11)

t−∇adp = 0 (12)

They are equivalent to the two equations

ζ =

(
−α

3
+
δ

3
∇ad

)
p (13)

t = ∇adp (14)

which may be rewritten in terms of the vectors u and v de�ned by equation 5:

u =

(
ζ
t

)
=

(
0
(
−α

3 + δ
3∇ad

)
0 ∇ad

)(
l
p

)
= R(r0 = 0)v (15)
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The matrix relating u and v by de�nition (see equation 7) corresponds to the
Riccati matrix R at the boundary r0 = 0. It is denoted by R(r0 = 0) in equation
15. From equation 15 we deduce that the boundary conditions unambiguously
determine the value of the Riccati matrix at the boundary r0 = 0, i.e., they
provide unambiguous initial conditions for the integration of the Riccati equation
10. With the modi�cation that the inverse of the Riccati matrix is determined
uniquely this result also holds for the outer boundary (photosphere). In general
the boundary conditions for the linear boundary value problem 4 imply unique
initial conditions (in terms of unambiguous initial values for the Riccati matrix or
its inverse) for the integration of the nonlinear Riccati matrix equation considered
as an initial value problem.

Equivalently, a complex matrix S relating u and v may be de�ned by

v = Su (16)

instead of the de�nition 7 for R. From equations 7 and 16 we deduce that
S = R−1 (provided that R−1 does exist). Similar to R its inverse matrix S
satis�es the Riccati equation 10, however with A substituted by D (and vice
versa) and B substituted by C (and vice versa). During integration R (or S)
may become singular. In this case we can switch from the integration of R to
the integration of S (or vice versa). Experiments suggest that switching from
integratingR to integrating S (or vice versa) is appropriate, if |detR| (or |detS|)
exceeds a conveniently chosen threshold (> 1).

Thus the Riccati approach consists of a transformation of the linear bound-
ary value problem into a nonlinear initial value problem with unambiguous initial
conditions for the integration of the Riccati matrix R (or its inverse S). Being a
shooting method it bene�ts from all associated advantages in particular concern-
ing reliability, resolution and accuracy. Simultaneously it does not su�er from
the problem of unknown initial conditions which is typical for shooting methods
applied to high order di�erential systems. The Riccati method is based on an
initial value problem with unique initial conditions. There is no need to iterate
a priori unknown initial conditions. As a consequence, the Riccati method is
numerically stable and does not su�er from the parasitic growth problem.

Using the Riccati method the stability problem is characterized by unique
initial conditions at both boundaries of the integration interval and the coe�cient
matrices A, B, C and D. They depend on the stellar model considered, the
harmonic degree l and the complex eigenfrequency σ, which is the only free
parameter of the problem. For arbitrary values of σ a solution of the boundary
eigenvalue problem posed by the stability analysis does not exist (see section 1.1).
In order to determine those values which allow for a solution of the problem by
using the Riccati method the Riccati equation is integrated for some prescribed
value of σ from both boundaries (unique initial conditions!) to some intermediate
point xfit within the integration interval. As a result, we obtain two Riccati
matrices at xfit determined by the "inner" integration from the bottom boundary
to xfit and the "outer" integration from the top boundary to xfit. We denote
them by Rin and Rout.

For a solution of the boundary eigenvalue problem the eigenfunctions need to
be continuous all over the integration interval, i.e., u and v have to be continuous
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in the integration interval, in particular at xfit. This condition may be written
as

uin = uout
vin = vout

(17)

where uin and vin denote solutions for u and v at xfit obtained by integration
between the bottom boundary and xfit. uout and vout denote solutions for u
and v at xfit obtained by integration between the top boundary and xfit. Using
the general de�nition 7 of the Riccati matrix R we obtain from the requirement
of continuity at xfit (equation 17)

uin = Rinvin = uout = Routvout = Routvin (18)

and

(Rin −Rout)vin = 0 (19)

A necessary condition for the existence of a solution of the linear homogeneous
equation 19 is given by

det(Rin −Rout) = 0 (20)

The condition 20 involves Rin and Rout which only depend on the eigen-
frequency σ but otherwise have been uniquely determined by integration of the
Riccati equation. Thus det(Rin−Rout) is a complex valued function of the com-
plex variable σ and its zeros correspond to a solution of the boundary eigenvalue
problem. I.e., those values of σ, for which the determinant in equation 20 van-
ishes, are the eigenfrequencies of the system we have been searching for. Their
determination has thus been reduced to �nding the complex zeros of a complex
valued function, which can be done using standard numerical techniques (e.g.,
the Newton - Raphson method). We emphasize that for the determination of
the determinant function in equation 20 neither the auxiliary solution of an ap-
proximate problem nor estimates for eigenvalues and eigenfunctions are required.
The determinant function is entirely based on the unrestricted stability problem
without reference to any additional approximation or estimate.
In general numerical algorithms used for the precise determination of the zeros of
a function require initial guesses for the position of the zero to start an iterative
process. They can be obtained simply by tabulating det(Rin−Rout) as a function
of the complex variable σ. Note that even these estimates are based on the
unrestricted stability problem and do not rely on any auxiliary approximative
treatment. Thus the danger to miss unexpected eigenvalues which are not present
in approximative treatments of the problem is considerably reduced. Moreover,
by tabulating the determinant function in the vicinity of a value of σ, to which
an iterative root �nding process has converged, it is possible to check whether
this value corresponds to a spurious or a true eigenvalue of the system. The
eigenvalues of the stability problem do not (and must not) depend on the choice
of xfit which is a free parameter of the Riccati method. However, the run of the
determinant function may sensitively depend on the position of xfit within the
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integration interval and a suitable choice of xfit can considerably facilitate the
search for eigenvalues and their iteration.

Once an eigenvalue σ and the associated Riccati matrix R(x) as a function
of the independent variable x has been determined, also the corresponding eigen-
functions u(x) and v(x) can be calculated. First of all vin is obtained from the
linear homogeneous continuity condition 19. With vin = vout = v(xfit) we thus
have initial conditions for the integration of the eigenfunction component v from
xfit both to the bottom and the top boundary using equation 4 together with
the de�nition 7 of the Riccati matrix:

v′ = Cu + Dv = (CR + D)v (21)

Note that for the integration of equation 21 the predetermined values for the
Riccati matrix R have to be used, the Riccati equation and equation 21 must
not be solved simultaneously. Finally, the eigenfunction component u is obtained
using the de�nition 7 of the Riccati matrix as u = Rv.

For more details on the application of the Riccati method to stellar stability
problems we refer to Gautschy & Glatzel (1990), further discussions of it may
be found in Scott (1973), Davey (1977) and Sloan (1977).

2. Numerical Simulation of Pulsations in the Nonlinear Regime

Similar to the previous section we shall adopt the same notation as in papers I
and II and shall make use of the results obtained there.

2.1. Basic Assumptions and Equations

Once a stellar model has been found to be unstable according to a linear stabil-
ity analysis the �nal result of the instability (e.g., �nite amplitude pulsations,
mass loss, disruption of the stellar envelope) needs to be determined. A pos-
sible approach consists of following the time development of the instability by
numerical simulation from hydrostatic equilibrium through the linear phase of
exponential growth into the nonlinear regime. At this stage the amplitude of the
perturbation is de�ned and the growth may enter saturation, if the instability
leads to �nite amplitude pulsations. Should these pulsations be associated with
mass loss, or should the envelope become disrupted, the results of the simulation
will then provide corresponding evidence.

Since a suitable numerical procedure, satisfying the necessary requirements
concerning accuracy and resolution (see below) is not available so far, the nonlin-
ear simulation of nonradial pulsations and intrinsically threedimensional e�ects
(magnetic �elds, rotation) is not yet feasible. Therefore numerical simulations
of nonlinear pulsations are so far still restricted to onedimensional studies in
spherical geometry.

In accordance with our previous discussions the outer boundary of the mod-
els will be taken to be the stellar photosphere, i.e., the atmosphere and optically
thin parts of the star will be disregarded. As a consequence, radiation transport
can be described on the basis of the di�usion approximation. In the absence of
a satisfactory description of convection in a pulsating star we adopt, similar to
the treatment of convection in the linear analysis (see section 2 of paper II), the
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�frozen - in approximation� (see, e.g., Baker & Kippenhahn, 1965). It consists of
assuming the convective �ux to be constant (and equal to its value in the initial
hydrostatic model) during pulsations. This assumption is to be understood in
the Lagrangean framework, i.e., the convective �ux is required to be constant in
time at any value of the Lagrangean coordinateMr given. For further discussions
of the �frozen - in approximation� we refer to section 2 of paper II.

Using the assumptions discussed the equations governing nonlinear radial
pulsations may now be derived directly from sections 2 and 3 of paper I. Their
analysis and notation closely follows that adopted in the study of Grott et al.
(2005). For further details we refer to this paper. Adopting a Lagrangean de-
scription with time t and mass Mr as independent variables mass conservation
(equation 20 of paper I) may be expressed as

∂

∂t

(
1

ρ

)
=

∂

∂Mr

(
4πr2v

)
(22)

where v denotes the radial component of the velocity and ∇~v has been rewritten
using equation 42 of paper I as

∇~v =
1

r2
∂

∂r

(
r2v
)

= ρ
∂

∂Mr

(
4πr2v

)
(23)

With the de�nition of v

∂r

∂t
= v (24)

the equation of momentum conservation (equation 43 of paper I) is written as

∂v

∂t
= −4πr2

∂p

∂Mr
− GMr

r2
− λQ (25)

Using 23 for ∇~v (together with a corresponding relation for ∇~F ) we obtain for
the equation of energy conservation from equation 25 of paper I:

∂u

∂t
= −p ∂

∂Mr

(
4πr2v

)
− ∂

∂Mr

(
4πr2Frad

)
− ∂

∂Mr

(
4πr2Fconv

)
− µQ (26)

where the radial component F of the total heat �ux is given by the radial
components of the radiative and convective �uxes, Frad and Fconv, through
F = Frad + Fconv. In deriving equation 26 nuclear energy generation has been
disregarded (ε = 0), since for the models considered pulsations are restricted to
the stellar envelopes, where nuclear processes are irrelevant.
Finally, we obtain for the radiative energy transport in the di�usion approxima-
tion from equation 45 of paper I:

Frad = −4πr2
c

κ

∂prad
∂Mr

(27)

where the radiative luminosity has been replaced by the radiative �ux and the
temperature T has been expressed in terms of the radiation pressure prad.
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Equations 22, 24, 25, 26 and 27 together with a thermal and a caloric
equation of state form a closed system for the determination of the dependent
variables r, v, Frad, u, p, ρ and prad (instead of T ). Note that Fconv is �xed in the
frozen - in approximation. The quantities λQ and µQ occurring in the momentum
and energy conservation equations account for the arti�cial (numerical) viscosity
needed to treat shock waves, which typically occur during the evolution of a
stellar instability. For more information on this issue, see Grott et al. (2005).

The momentum and energy conservation equations 25 and 26 provide the
energy balance of the system by using a familiar procedure: Equation 25 is
multiplied with the velocity v and integrated over a mass element. Then equation
26 is integrated over the same mass element and added to the result. We obtain

d

dt
(Ekin + Etherm + Egrav) + ∆Ltherm + ∆Lacoustic = 0 (28)

or, alternatively, after integrating equation 28 over the time and subtracting the
initial values of Ekin, Etherm and Egrav:

Ekin + Etherm + Egrav +

∫
∆Lthermdt+

∫
∆Lacousticdt = 0 (29)

Equations 28 and 29 represent the energy balance of the system. They are valid
for any mass element and therefore also for the entire stellar envelope. Here,
Ekin, Etherm and Egrav refer to the kinetic, thermal and gravitational potential
energy content of the mass element, respectively. ∆Ltherm denotes the di�erence
of the total thermal (radiative and convective) luminosity between the top and
the bottom boundary of the mass element, and ∆Lacoustic describes its analogue
for the acoustic luminosity Lacoustic. The latter is de�ned as

Lacoustic = 4πr2vp (30)

and represents the luminosity which is associated with the mechanical (acoustic)
energy �ux given by the product of velocity and pressure. E.g., sound waves and
shock waves imply an energy �ux and an acoustic luminosity which is described
by equation 30.

2.2. Demands on the Numerical Treatment

Apart from standard tests for the numerical scheme (e.g., validation of the code
with respect to the correct representation of shock waves according to Noh
(1987)) we require the numerical simulation to start from hydrostatic equilib-
rium and to reveal the physical instability without any additional action or
external perturbation. If the numerical scheme is too dissipative, the model
remains in equilibrium and an external perturbation would be required to initi-
ate any motion, which is not necessarily related to the physical instability. For
low numerical dissipation the system often exhibits violent initial perturbations
with amplitudes in the nonlinear regime. As a consequence, the linear phase of
exponential growth of the physical instability is not represented and the question
remains, whether the result of the simulation is a numerical artefact caused by
initial perturbations rather than by the physical instability. For a validation of
the code we therefore require that the simulation covers the linear phase. Then
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growth rates and periods of unstable modes derived from the simulation can be
compared with their independently predetermined counterparts from the linear
analysis.

To overcome the unphysical initial perturbations arti�cial dissipation and
viscosity or a pseudo time evolution of the grid (see, e.g., Dor� & Drury (1987)
and Dor� & Feuchtinger (1991)) have been introduced. As a consequence, the
physical instability then has to be triggered by an external perturbation which is
undesirable as discussed above. The unwanted initial perturbations were found
by Grott et al. (2005) to be caused by a mismatch of the prescribed initial model
and the numerical scheme used for the simulation, i.e., the initial model is not in
hydrostatic equilibrium with respect to the numerical scheme. A deviation from
equilibrium (as de�ned on the basis of the di�erence scheme used) implies ac-
celerations and thus initial perturbations which may reach the nonlinear regime.
A solution of the problem proposed by Grott et al. (2005) therefore consists of
adjusting the prescribed initial model to the numerical scheme such that the
slightly modi�ed initial model represents a perfect hydrostatic equilibrium with
respect to it.

Adopting - with vanishing accelerations - the numerical scheme used for the
subsequent simulations a new hydrostatic initial model is constructed by an iter-
ative relaxation procedure where the original initial model is taken as an initial
guess. As a result, the arti�cial initial perturbations in fact disappear without
the necessity to introduce arti�cial dissipation. Moreover, due to minimal numer-
ical dissipation the code picks up the physical instability from numerical noise
without any further action or external perturbation. The time evolution of the
instability then enters the linear phase of exponential growth, where - for valida-
tion of the code - the pulsation period and the growth rate determined from the
simulation can be compared with the corresponding predetermined values from
the independent linear analysis.

For illustration the time evolution of the instability of a stellar model cor-
responding to a mass of M = 45M�, the luminosity L = 5.37 × 105L�, the
e�ective temperature Teff = 33890K and the chemical composition (X,Y, Z) =
(0.7, 0.28, 0.02) is shown in Figure 1, where the velocity at the outermost grid
point of the model is given as a function of time. It starts from hydrostatic
equilibrium with velocity perturbations of the order of 10−5cm/sec which corre-
spond to the numerical noise level. Then the code picks up (without any further
action or external perturbation) an unstable mode with a period of 0.62d and
a growth rate of 0.64/d which di�er from their counterparts determined by the
linear analysis by less than 5 per cent. After ∼ 45d the linear phase of expo-
nential growth comes to an end and the evolution enters the nonlinear regime
where the velocity amplitude saturates at a value corresponding to 19 per cent
of the escape velocity. Thus �nite amplitude pulsations are the �nal result of the
instability of the model considered.

Apart from validation of the code in the linear regime by comparison with
the results of an independent linear analysis the compliance with the energy
balance 29 of the simulation provides an essential criterion for its quality. As an
example, the various energy terms occurring in equation 29 are given as a function
of time in Figures 2, 3 and 4 for the simulation of the unstable model considered
above in a time interval covering some pulsation periods in the nonlinear regime.
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Figure 1. The velocity at the outermost grid point as a function of
time for an unstable stellar model with the mass M = 45M�, the lu-
minosity L = 5.37 × 105L�, the e�ective temperature Teff = 33890K
and the chemical composition (X,Y, Z) = (0.7, 0.28, 0.02) (from Figure
1 of Grott et al. (2005)). The evolution starts from hydrostatic equilib-
rium with velocity perturbations of the order of 10−5cm/sec (numerical
noise), enters the linear phase of exponential growth of the instability
and �nally reaches the nonlinear regime where the velocity amplitude
saturates at a value corresponding to 19 per cent of the escape velocity.
Finite amplitude pulsations are the �nal result of the instability in this
case.
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Figure 2. The thermal energy (solid line) and the gravitational po-
tential energy (dotted line) of the stellar envelope (initial hydrostatic
values are subtracted) as a function of time for the same unstable stellar
model as in Figure 1 (from Figure 1 of Grott et al. (2005)).
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Figure 3. The kinetic energy of the stellar envelope (solid line) and
the time integral of the di�erence between top and bottom boundary
of the envelope of the thermal luminosity (dotted line) as a function of
time for the same unstable stellar model as in Figure 1 (from Figure 1
of Grott et al. (2005)).
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Figure 4. The time integral of the di�erence between top and bottom
boundary of the envelope of the acoustic luminosity as a function of
time for the same unstable stellar model as in Figure 1 (from Figure 1
of Grott et al. (2005)).
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From Figures 2, 3 and 4 we deduce that the thermal and gravitational po-
tential energies exceed the other terms by more than two orders of magnitude
their sum being of the order of the kinetic energy and the time integral of the
thermal luminosity which exceed the time integral of the acoustic luminosity by
one order of magnitude. I.e., the terms in the energy balance 29 in general di�er
by up to four orders of magnitude. Therefore a meaningful determination of the
kinetic energy (and thus also of the amplitude of the velocity) and the acous-
tic luminosity requires a relative accuracy of at least 10−5 which can never be
achieved by grid re�nement or increased time resolution in standard numerical
schemes. A solution of the problem consists of adopting a fully conservative nu-
merical scheme (see, e.g., Fraley (1968) and Grott et al. (2005)) which satis�es
the energy balance intrinsically for each mass element. Necessary for full con-
servativity is that the di�erence operators have the same properties and satisfy
the same relations as their di�erential counterparts. Some aspects of the explicit
construction of a fully conservative scheme for the simulation of radial stellar
pulsations will be discussed in section 2.3.

According to equation 29 the sum of all energy terms shown in Figures 2,
3 and 4 should vanish, if the energy balance is satis�ed. In other words, this
sum obtained from the results of a simulation corresponds to its error in the
energy balance. It is given in Figure 5 as a function of time for the simulation of
the unstable model considered above and found to be smaller by �ve orders of
magnitude than the time integral of the acoustic luminosity being the smallest
term in the energy balance 29. We conclude that all energies, in particular the
kinetic energy and the time integral of the acoustic luminosity, are determined
with su�cient accuracy to allow for meaningful statements concerning velocity
amplitudes and acoustic energy �uxes of the �nal �nite amplitude pulsations.
Any simulation of stellar pulsations should be required to prove its quality by
presenting the energy balance and its error. We emphasize that the extreme
accuracy requirements can only be satis�ed by fully conservative schemes.

Concerning pulsationally driven mass loss as a possible �nal result of a stel-
lar instability the time integral of the acoustic luminosity (see Figure 4) is of
particular interest. In each pulsation cycle phases of incoming and outgoing
acoustic energy �uxes prevail, i.e., the time integral of the acoustic luminosity is
not a monotone function. However, if the outgoing �uxes exceed the incoming
�uxes, the average over one pulsation period of the time integral of the acoustic
luminosity will increase with time. We deduce from Figure 4 that this holds
for the �nal �nite amplitude pulsations of the model discussed above. A conse-
quence of the increase with time of the mean of the time integral of the acoustic
luminosity is a mean acoustic luminosity driven by the pulsations, which can be
derived from the simulations as the mean slope of the curve shown in Figure
4. Should this mean acoustic (mechanical) luminosity ultimately drive a stellar
wind, its mass loss rate may be estimated by requiring the acoustic luminosity
to be comparable with the kinetic energy per time lost in the wind.

2.3. Basic Properties of Fully Conservative Schemes

The derivation of the energy balance 28 for a mass element implies the mul-
tiplication of equation 25 (momentum conservation) with the velocity v = ∂r

∂t
together with the following subsequent transformations of the time derivatives:
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Figure 5. The sum of all energies (thermal, gravitational potential,
kinetic, time integrated thermal luminosity, time integrated acoustic
luminosity) presented in Figures 2, 3 and 4 as a function of time (from
Figure 1 of Grott et al. (2005)). According to equation 29 it corresponds
to the numerical error in the energy balance.
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v · ∂v
∂t

=
∂

∂t

(
1

2
v2
)

(31)

v ·
(
−GMr

r2

)
=
∂r

∂t
·
(
−GMr

r2

)
=

∂

∂t

(
GMr

r

)
(32)

Without the di�erential relations 31 and 32 the energy balance 28 would not hold.
As a consequence, these relations must hold also for the di�erence analoga of the
di�erential operators, if we require the energy balance to hold for the numerical
solution of equations 22, 24, 25, 26 and 27. In other words, the numerical scheme
has to be designed such that it satis�es equations 31 and 32 intrinsically.

For a numerical treatment the derivative with respect to time of a quantity
Q may be represented by the di�erence scheme

∂Q

∂t
→ Q̂−Q

τ
(33)

where Q = Q(t) denotes the value of Q at time t and Q̂ = Q(t+ τ) its value at

time t+ τ . We introduce time averages Q(α) by

Q(α) = αQ̂+ (1− α)Q (34)

with 0 ≤ α ≤ 1. Thus we obtain for the di�erence analogon of equation 31

v(?) · v̂ − v
τ
← v · ∂v

∂t
=

∂

∂t

(
1

2
v2
)
→ 1

2

v̂2 − v2

τ
(35)

If the relation 31 is required to hold also for the di�erence scheme we deduce
v(?) = v(1/2) from equation 35. As a consequence the di�erence analogon of
equation 24 is given by

r̂ − r
τ

= v(1/2) (36)

Similarly we obtain for the di�erence analogon of equation 32

r̂ − r
τ

(
−GMr

r(?)
2

)
← ∂r

∂t
·
(
−GMr

r2

)
=

∂

∂t

(
GMr

r

)
→ 1

τ

(
GMr

r̂
− GMr

r

)
(37)

If the relation 32 is required to hold also for the di�erence scheme we deduce
1

r(?)
2 = 1

r̂r from equation 37.

Thus we have shown that the numerical representation of the velocity and
the gravitational force cannot be chosen arbitrarily, if the energy balance is
required to hold intrinsically for each mass element, i.e., if the numerical scheme
has to be strictly conservative. Rather the time averages of the velocity and the
gravitational force are determined by the condition of full conservativity:

v → v(1/2) , −GMr

r2
→ −GMr

r̂r
(38)
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An immediate consequence of the time averages 38 required by conservativity is
that the numerical scheme is necessarily implicit with respect to time, i.e., at each
time step a system of implicit algebraic equations has to be solved. Concerning
the construction of strictly conservative numerical schemes for the simulation of
nonlinear nonradial stellar pulsations we refer to Glatzel & Chernigovski (2016).
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Abstract. Fourier's traditional signal analysis does not work when ob-
servations are not equispaced in time, as is usually the case in Astronomy.
The Lomb Scargle periodogram is the favorite substitute. We will study
the basics of this technique and some care that needs to be taken for its
practical application and its interpretation.
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1. A Short Introduction

0. The structure of this class follows broadly that of the excellent article by
VanderPlas (2018). Most examples are taken from that paper, though all the
�gures were rebuilt by the author.

1. There are many ways to get data in Astronomy. Let's list a few main ones:
Binned observations: this mode is used, for example, when recording the

arrival of cosmic rays that produce Cherenkov radiation inside water-�lled tanks,
thus e�ectively binning the events into the volumes of the array of tanks.

Time-tag observations: data obtained, for example, when recording the ar-
rival times of individual photons re�ected from laser pulses which were sent to
the Moon.

Time-to-spill observations: used, for example, when recording the time re-
quired for a �xed number of gamma rays to accumulate.

Point observations: this is the typical mode of optical astronomy, where
stellar brightnesses are measured only at certain moments.

2. We will focus on point observations. To determine if there is any periodic
signal in our observation, di�erent techniques are available:

Fourier methods: they include the standard Fourier transform, the classi-
cal or Schuster periodogram, the Lomb-Scargle periodogram, various correlation
functions, and wavelets.

Phase-folding methods: some trial periods are assumed, and the observa-
tions are folded in such a way that they fall in one cycle of those periods. If the
period is correct, the resulting points will be almost aligned, except for observa-
tional errors. The string length method determines the best period by computing
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the length of the path that joins neighboring points, and choosing the shortest.
Analysis of variance is based on how the points get distributed in a histogram.
The conditional entropy directly measures the disorder of the points.

Least-squares methods: among them, we will mention the Lomb-Scargle pe-
riodogram and the Supersmoother approach, which performs local least-squares
�ts instead of a global one.

Bayesian methods: they include phase binning, similar to the analysis of
variance, and stochastic processes.

In the rest of the class, we will deal mainly with the Lomb-Scargle method,
which is a favorite among astronomers. To do so, we �rst need to talk about the
Fourier transform and the classical periodogram. You have probably noticed that
the Lomb-Scargle periodogram also appears within the least-squares methods...
we will come back to this unique feature later.

2. The Fourier Transform

3. Let's start with the Fourier transform. What are we doing when we do this
transform? Let's suppose a space in which the three axes are not x, y and z,
but x0 = 1, x1 = x and x2. A point in this space (Figure 1, left) will have,
say, coordinates a0, a1 and a2, so the point will be the second-degree polynomial
a0x

0 + a1x
1 + a2x

2. Any other point in this space represents another of these
polynomials. The entire space is, therefore, the complete set of second-degree
polynomials. We emphasize that this is possible because the di�erent powers
of x are linearly independent. For example, we cannot get x2 by any linear
combination of x0 and x1.

4. Now, suppose we add more orthogonal axes to our space. In such a case, the
resulting space will represent higher-grade polynomials. If we keep adding axes
until we have an in�nite number of them, we will have an in�nite sum of terms,
what we know as Taylor's series. Any analytical function f(x) developed as a
polynomial gives us its Taylor series:

f(x) = a0x
0 + a1x

1 + a2x
2 + · · ·+ ajx

j + · · · =
∞∑
n=0

anx
n. (1)

The square of each coe�cient ai is the power with which the exponent i con-
tributes to the function f . For example, a zero coe�cient means that that
exponent does not contribute to the function.

5. Now, let's suppose that the axes of our original 3D space are not powers of x
but complex exponentials of the variable −t (Figure 1, right): e− i 0ωt = 1, e− iωt,
e− i 2ωt, labeled by integer multiples of a given frequency ω: 0ω, 1ω, 2ω. We
recall that these exponentials are again linearly independent. Let's call a0ω, a1ω

and a2ω the coordinates of a point in this space. As before, this point de�nes
a function. Changing the notation from nω to ωn, our function will be written
like this:

f(t) = aω0e
− iω0t + aω1e

− iω1t + aω2e
− iω2t =

2∑
n=0

aωne
− iωnt. (2)
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Figure 1. Left: the three-dimensional space of second-degree polyno-
mials. Right: a new three-dimensional space for functions.

6. Let's suppose again that we add in�nite orthogonal axes to our space, in this
case adding also the negative multiples of the frequency ω. A point in this space
will be a function composed of an in�nite number of complex exponentials, each
corresponding to an integer multiple of a given frequency, i.e. the Fourier series
of a function f :

f(t) = · · ·+ aω−1e
− iω−1t + aω0e

− iω0t + aω1e
− iω1t + . . .

=
∞∑

n=−∞
aωne

− iωnt

=
1√
2π

∞∑
n=−∞

gωne
− iωnt,

(3)

where in the last line we have rede�ned the coe�cients a ≡ g/
√

2π for future
convenience. As before, the square of each coe�cient |gωn |2 is the power with
which each frequency ωn contributes to the function f . Note that the coe�cients
are now complex numbers, so the square means the square of their moduli.

7. We want to move now from discrete to continuous developments. To this
end, we take all the real values of the frequency instead of an in�nite countable
number of them. In this way, the discrete subindexes of g become a continuous
variable, the ωn become the real variable ω, and the summation over ωn becomes
an integral over ω, so we obtain

f(t) =
1√
2π

∫ ∞
−∞

dω g(ω) e− iωt, (4)

which is called the inverse Fourier transform of the function g.
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The amplitude |g(ω)|2, now a function of ω, is called the power spectrum
of f . In other words, the function g(ω) contains all the information about how
much power there is in each ω. This is very important: if we could compute g
from a given f , we would know how much power a signal with frequency ω is
contributing to f .

8. So let's see how to calculate g given a function f . Starting from Eq. (4), the
�rst step is to multiply both members by a complex exponential with a frequency
ω′, a new variable. Then, we integrate over t, covering all possible times. The
next step is to interchange the integrals of the second member; g(ω) can come
out of the integral over t. The inner integral is then one of the de�nitions of the
Dirac delta.

The Dirac delta is a distribution that has the following property, among
others: if multiplied by another function and integrated, and if the interval of
integration contains the zero of its argument, then the result is the other function
evaluated at the point where the Dirac delta is zero. After doing this integral,
the variable ω has gone, so we may eliminate the prime. Then we obtain

g(ω) =
1√
2π

∫ ∞
−∞

dt f(t) e iωt, (5)

that is, we have solved for our function g, which is the Fourier transform of the
function f . Sometimes it is convenient to express the transform as an operation
on f giving g as the result. In this case, the transform is seen as a functional,
that is, as an operator on a function, and the notation is usually g(ω) = F [f ].
An operator notation can be used for the inverse too: f(t) = F−1[g].

9. Some interesting properties of the Fourier transform are:
Time scaling: F [f(at)] = 1

|a| g
(
ω
a

)
.

Frequency scaling: F−1[g(bω)] = 1
|b| f

(
t
b

)
.

Time shifting: F [f(t− t0)] = g(ω) e iωt0 .
Frequency shifting: F−1[g(ω − ω0)] = f(t) e− iω0t.
If f(t) ∈ R =⇒ g(−ω) = g(ω)∗ =⇒ |g(−ω)|2 = |g(ω)|2, i.e. the

power spectrum is even. Physical data are always real, so their power spectrum
is always even. If, in addition, f(t) is even, then g(ω) is real and even too.

10. Recapitulating, the power spectrum is a positive real-valued function that
quanti�es the contribution of each frequency ω to the total signal. Let's see some
examples (see Figure 2). All these examples are real even functions, so we may
plot only the real parts of the Fourier transforms.

Suppose that we have a sinusoidal signal, with a period T and frequency
ω. Its Fourier transform will be a pair of Dirac deltas, at frequencies ω and −ω.
That is, the only frequency contributing to our signal is ω.

Now, let our signal be a Gaussian, with dispersion σ. Its Fourier transform
will be another Gaussian, but with a dispersion which is inversely proportional
to the original one. This is a characteristic of the Fourier transform: the wider
a feature in the original signal, the narrower the corresponding feature in the
space of frequencies, and vice versa.

Now let our signal be a top hat function, that is, a constant signal only
in a given time interval. On, o�. The Fourier transform is a sinc function,
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Figure 2. Left: di�erent signals. Right: their Fourier transforms.
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i.e. sin(πx)/(πx), with a width again inversely proportional to the width of the
original signal.

If our signal is a Dirac comb, that is an in�nite series of Dirac deltas evenly
spaced in time representing a periodic instantaneous signal, then the Fourier
transform is another Dirac comb, but with spacing in frequency inversely pro-
portional to the time interval of the signal.

11. An important operation that we are going to use is convolution. The con-
volution f ∗ g between two functions f and g is de�ned as the integral over time
of the product of the two functions, but with one of them delayed in time:

(f ∗ g)(t) ≡
∫ ∞
−∞

dt′ f(t′) g(t− t′). (6)

This is equivalent to sliding one of the functions over the other and calculating
the integral at each step.

There is a convolution theorem that establishes that the Fourier transform of
a convolution is equivalent to the point-to-point product of the Fourier transforms
of each function:

F [f ∗ g] = F [f ] · F [g]. (7)

A corollary of this theorem is that the Fourier transform of a product of functions
is equivalent to the convolution of the Fourier transforms of each function:

F [f · g] = F [f ] ∗ F [g]. (8)

12. Now, when we observe a signal, we never observe the true signal. We are not
talking about errors, but about the observing window. For example, if we observe
the magnitude of a star, we are imposing both a top hat between our �rst and
last observations and a discretization because we do not observe continuously.
So, our observed signal will always be a�ected by a window function W . Then,
when we compute the transform of an observed signal, a convolution with the
transform of the window will always be present.

13. Let's see an example of this (Figure 3). Let's take a signal made up of four
sines, with di�erent amplitudes and frequencies. If we observe this signal contin-
uously between two moments of time, that is, with a top-hat observing window,
the resulting observed signal will be the point product of the two functions.

What happens in the frequency world? The transformed signal is, as ex-
pected, a set of peaks at the four frequencies that make up the signal. The
transformed window will be, as we already know, a sinc function. We have to
convolve both transforms to obtain the Fourier transform of the observed signal.
As we can see in Figure 3, the form and width of the sinc function is replicated
at each of the peaks of the original transform.

14. Let's see another example (Figure 4). Our original signal is now a simple
Gaussian, but observed only in a set of moments uniformly spaced in time. Thus,
our observed data is a series of Dirac deltas with amplitudes modulated by the
Gaussian. The frequency content of the original signal will be a Gaussian, and
that of the window will be a Dirac comb. When they are convolved they yield
our Gaussian replicated on each of the peaks of the comb.
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Signal Signal

Window Window

Observed Observed

Figure 3. Left: a signal, a window and their point-to-point product.
Right: their respective Fourier transforms.
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Signal Signal

Window Window

Observed Observed

Figure 4. Left: another signal, another window and their point-to-
point product. Right: their respective Fourier transforms.
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15. The last example leads us to one of the problems of all this. Let's see. Let's
take again the last Gaussian as the original signal. Now, we observe again the
signal with a Dirac comb, but with a lower frequency than before (Figure 5).
Therefore, we are observing now a few peaks. On the spectra side, we have our
usual spectrum for the real signal, and a Dirac comb for the spectrum of the
window, though with teeth closer to each other. Note in the resulting convolved
spectrum how the Gaussians have no place to �t between the teeth of the comb.
We can lose all hope of recovering the real spectrum.

16. This brings us to the Nyquist limit. Recapitulating: a function uniformly
sampled in time can be fully recovered only if its Fourier transform can �t entirely
between the teeth of the comb. Therefore, let's suppose we sample our signal at
time intervals T . The sampling rate, let's call it ω0, is then 2π/T . To recover the
signal, it should be made up only of frequencies in between ±ω0/2 to �t between
the teeth.

The traditional Nyquist theorem goes in the other direction: to fully rep-
resent the frequency content of a band-limited signal ±ω0, we must sample the
data with a rate of at least 2ω0, called the Nyquist frequency.

17. Now, our last step towards the periodogram is to consider the discrete
Fourier transform. Let's take an in�nitely long and continuous signal f(t), and
let's sample it with a Dirac comb with spacing ∆t. The observed signal will be
the point-to-point product of both:

fobs(t) = f(t) · III∆t(t), (9)

where III∆t symbolizes a Dirac comb with spacing ∆t. Note that the signal
is known only at the times n∆t, with n an integer. If we compute its Fourier
transform, we obtain

F [fobs](ω) =
1√
2π

∞∑
n=−∞

fn e
iω n∆t, (10)

where we have used fn ≡ f(n∆t) to simplify the notation.
However, in a real observation, we do not take an in�nite number of samples,

but a �nite number of them. This is equivalent to applying a top-hat rectangular
window of width N∆t where N+1 is the total number of samples, so if we choose
arbitrarily t = 0 at the �rst observation, the summation goes only from 0 to N :

F [fobs](ω) =
1√
2π

N∑
n=0

fn e
iω n∆t. (11)

18. Note that, by construction, the last expression is the Fourier transform of the
original signal sampled with a Dirac comb and convolved with a sinc function of
width 4π/T = 4π/(N∆t) (because we have applied a top-hat window of width
N∆t). Then the spectral Dirac comb will be smeared with this width. Now,
according to the Nyquist theorem, two values of the spectrum at frequencies
within 2π/(N∆t) will not be independent, but they will belong to more than
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Figure 5. Left: same signal but another window, and their point-to-
point product. Right: their respective Fourier transforms. The gray
lines are the individual peaks generated by each tooth of the Dirac
comb.
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one peak. Then, to get the maximum information we should sample the spectrum
at N evenly spaced frequencies with a separation

∆ω =
2π

N∆t
. (12)

If we call k∆ω the resulting frequencies, we get

F [fobs](k∆ω) =
1√
2π

N∑
n=0

fn e
i k∆ω n∆t. (13)

De�ning for convenience

f̂k ≡
√
N

2π
F [fobs](k∆ω), (14)

we �nally get

f̂k =
1√
N

N∑
n=0

fn e
2π i kn/N , (15)

which you will recognize as the discrete Fourier transform of the set fn. Note that
the spacing of the frequencies is optimal in terms of both the Nyquist sampling
and the e�ect of the �nite observing window.

3. The Periodogram

19. We are now in a position to study the periodogram. The classical peri-
odogram was de�ned by Schuster (1898) as

PS(ω) =
1

N

∣∣∣∣∣
N∑
n=1

fn e
iω n∆t

∣∣∣∣∣
2

. (16)

If you look closely, you will �nd that it is the square of the modulus of the
discrete Fourier transform of the set fn, but evaluated at any real frequency.

What is the maximum frequency at which we should evaluate this func-
tion? Naturally, at the Nyquist frequency, since beyond that there is no new
information. The spectrum begins to repeat itself, a feature called aliasing.

20. Now, we have to deal with a very important problem, always present in
Astronomy: non-uniform sampling. In practice, we do not sample a signal at a
periodic rate, but at a set of times tn unevenly distributed:

W{tn}(t) =
N∑
n=1

δD(t− tn), (17)

where δD is the Dirac delta. The observed signal is then a product of the true
signal by this window, resulting in an uneven distribution of values of the func-
tion:

fobs(t) = f(t) ·W{tn}(t) =
N∑
n=1

f(tn)δD(t− tn), (18)
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and the Fourier transform of the observed set will be the convolution of the real
signal with this irregular window:

F [fobs] = F [f ] ∗ F [W{tn}]. (19)

21. Let's see what happens. Let's take a Gaussian as a model of our signal.
Figure 6 (left) shows the original signal, an irregular window, and their product
which is the observed function. On the spectral side (Figure 6, right), see what
happens with the spectrum of the window: it has lost all regularity. It is no longer
a Dirac comb, but a completely irregular function. The convolution results in
the ugly Fourier transform at the bottom. Note that the original Gaussian is
almost lost.

We conclude that an irregular spacing of the observations leads to an irreg-
ular spacing of frequency peaks in the window transform, and that there is no
exact aliasing of the true signal, so we cannot recover the true Fourier transform.

22. A question immediately arises: what is now the Nyquist frequency? The
question is relevant because the uneven sampling has destroyed the symmetry
on which the concept of Nyquist frequency rested. There are in the literature
several attempts to de�ne a substitute for the Nyquist frequency: the inverse of
the mean of the sampling interval, their harmonic mean, their median, or even
the minimum among them. It turns out that none of these approaches is correct.
The practical pseudo-Nyquist frequency can be far larger than any of these.

23. Let's see an example. We analize 100 samples taken at random times
between 0 and 1200 of the signal

f(t) = 10 + 7.5 sin(100t) + 13 % white noise. (20)

Note that the only frequency present in our signal is ω = 100. Figure 7 (left)
shows the resulting observed signal. Note that a frequency of 100 corresponds
to a period of 2π/100, something that is not (and cannot be) visible at all in the
plot.

24. Figure 7 (right) shows the periodogram of this set, in an interval of frequen-
cies that includes 100. Surprisingly, the periodogram recovers the true frequency
even when the signal is invisible to the eye! But see also the proposed pseudo-
Nyquist frequencies. With none of them we could have recovered the true result.
Note that we have extended the periodogram beyond 100 because we knew that
that was the target frequency. But in practice, this is precisely the unknown.
How far do we have to extend the periodogram, that is, what is an e�ective
pseudo-Nyquist frequency?

25. Eyer & Bartholdi (1999) have proved this theorem: the equivalent Nyquist
frequency is π/p, where p is the largest factor such that each spacing ∆ti is
exactly an integer multiple of this factor. In other words, p is such that we can
put each observing time in a multiple of it. But a corollary is that if any pair of
observation spacings has an irrational ratio, then the pseudo-Nyquist frequency
is in�nity! Fortunately, the observations always have a �nite precision, so the
limit frequency in practice can be computed as ωNy = π10D, where D is the
number of decimal places of the observations.
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Figure 6. Left: a Gaussian signal, an irregular observing window,
and their point-to-point product. Right: their respective Fourier trans-
forms.
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Figure 7. Left: an irregular sampling of a sinusoidal signal plus noise.
Right: its periodogram, with some pseudo-Nyquist frequencies shown.

26. We �nally got to the Lomb-Scargle periodogram. The classical periodogram
can be rewritten

PS(ω) =
1

N

( N∑
n=1

fn cos(ω tn)

)2

+

(
N∑
n=1

fn sin(ω tn)

)2
 , (21)

where we have separated the exponentials in sines and cosines. This classical
periodogram has nice statistical properties. For example, if the signal is pure
Gaussian noise and it is uniformly sampled, then its values are χ2 distributed.
Therefore, when a signal is present it is easily detectable because the distribution
of values of the periodogram will not be χ2 distributed. The problem is: when
the sampling is irregular, this property is completely lost.

27. Scargle (1982) was the one who solved this problem. He assumed a general-
ization of the periodogram,

PL(ω) =

(∑N
n=1 fn cos(ω [tn − τ ])

)2

2A2
+

(∑N
n=1 fn sin(ω [tn − τ ])

)2

2B2
, (22)

with A, B and τ functions of ω. He proved that the three functions can be chosen
so that a) the periodogram reduces to the classical one when the observations
are equally-spaced in time; b) the periodogram's statistics are computable; and
c) it is insensitive to time-shifts.

28. Here is the expression obtained by Scargle:

PL(ω) =

(
N∑
n=1

fn cos(ω [tn − τ ])

)2

2

N∑
n=1

cos2(ω [tn − τ ])

+

(
N∑
n=1

fn sin(ω [tn − τ ])

)2

2

N∑
n=1

sin2(ω [tn − τ ])

, (23)
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with

τ(ω) =
1

2ω
arctan


N∑
n=1

sin(2ωtn)

N∑
n=1

cos(2ωtn)

 . (24)

Note that τ depends only on the times of observation.

29. As we have anticipated, the Lomb-Scargle periodogram has also a least-
squares interpretation. Lomb (1976) showed that this periodogram is obtained
if we �t a model to our data consisting of a sinusoid at each candidate ω:

y(t, ω) = Aω sin(ωt− ϕω). (25)

As usual in the least-squares method, we compute the merit �gure χ2 by summing
up all the squares of the di�erences between the model and the observations:

χ2(ω) =
N∑
n=1

(
yn − y(tn, ω)

)2
. (26)

If we call χ̂2 the value obtained by minimizing Eq. (26) at each frequency with
respect to the amplitude Aω and the phase ϕω, and χ̂2

0 the dispersion of the
observations, then the Lomb-Scargle periodogram can be written thus:

PL(ω) =
χ̂2

0 − χ̂2

2
. (27)

30. The least-squares interpretation of the Lomb-Scargle periodogram allows
treating measurement errors easily. If each observation yn carries an error σn,
then the standard approach of the least-squares method is to add those errors in
the denominators of the χ2 statistic. Therefore, we do the same in our case:

χ2(ω) =
N∑
n=1

(
yn − y(tn, ω)

σn

)2

. (28)

After some algebra, the resulting periodogram is the same as the standard Lomb-
Scargle periodogram, but every sum of the expression adds a weight wn computed
as usual from the observational errors:

wn =
σ−2
n

N∑
i=1

σ−2
i

. (29)

Thus for example,

N∑
n=1

fn cos(ω [tn − τ ]) becomes
N∑
n=1

wnfn cos(ω [tn − τ ]). (30)
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Figure 8. Left: random sampling of a sinusoidal signal plus noise,
centered at a value of 16. Right: its periodogram.
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Figure 9. Left: the same random sampling, but now centered around
0. Right: its periodogram.

31. Another important issue relative to periodograms is that of the mean of the
observations. Let's work with the signal

f(t) = 16 + 2 sin(ωt) + white noise, (31)

with ω = 2π · 0.3. We generate 100 random observations between 0 and 100 in
time, shown in Figure 8 (left) where we have folded all the observations modulo
the period. The points were repeated in a second period to better visualize the
results. Note that the data are centered around 16; this might be the result of
observing the magnitude of some variable star.

The periodogram, in cycles per unit time, is shown in Figure 8, right. We
look for a feature at a frequency 0.3, but there is nothing! In fact, there is not
even a peak! What is happening here is that the periodogram is fooled by the
mean value of the data.

32. Let's center the data around zero (Figure 9). Now it is! A clean, superb,
lonely peak at a frequency of 0.3. The moral is: always center the data before
computing a periodogram.

33. There is another problem to take care of. Let's suppose that we are mea-
suring the magnitude of some variable star, with the same signal as before with
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Figure 11. The signal that the periodogram sees (solid green curve).

frequency 0.3, but that our telescope has a limiting magnitude. Figure 10 (left)
shows an example; the data is considered unreachable above magnitude 16.8.

Let's compute the periodogram (Figure 10, right). As we can see, it shows
that 0.6 is the main frequency, a harmonic of the true one. What happens here is
that the periodogram tries to adjust the frequency to the data it has, obtaining
the signal shown in Figure 11.

34. The solution is to compute the periodogram with a so-called �oating mean,
also known as date-compensated discrete Fourier transform or generalized Lomb-
Scargle periodogram. It consists of adding an o�set to each frequency:

y(t, ω) = y0(ω) +Aω sin(ωt− ϕω). (32)

Then, this new problem has the o�set y0(ω) as a third parameter to be found,
along with amplitude and phase. To simplify the notation, we de�ne the following
abbreviation:

[fc] ≡
N∑
n=1

wnfn cos(ω [tn − τ ]), (33)
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Figure 12. Left: �oating mean periodogram. Right: the recovered
signal (solid red curve).

and similar expressions for other cases. With this notation, the resulting peri-
odogram with �oating mean is

PLS(ω) =
1

2

(
([fc]− [f ][c])2

[c2]− [c]2
+

([fs]− [f ][s])2

[s2]− [s]2

)
, (34)

with

τ(ω) =
1

2ω
arctan

(
[2sc]− 2[s][c]

[c2 − s2]− ([c]2 − [s]2)

)
. (35)

35. Let's compute the periodogram of our limited-magnitude sample with a
�oating mean (Figure 12, left). Now it is. The correct frequency is recovered with
high �ying colors. The periodogram can see now the true frequency (Figure 12,
right).

36. At last, the problem of uncertainty. We, as scientists, are supposed to give
observational results with their error bars. For frequencies, we usually take the
width of a line as a measure of its uncertainty. But since a periodogram is a
set of values at discrete frequencies, we do not have proper lines. However, we
can get a width of a line if we compute the values of the periodogram at many
frequencies between those already computed, thus achieving a quasi-continuous
curve by joining the values at each frequency.

37. We take as a benchmark

f(t) = sin(ωt) + white noise, (36)

with ω = 2π · 1, sampling it at N points randomly chosen between time 0 and
100. The periodogram, as said, is constructed with many more frequencies than
needed, in such a way that joining its values a continuous-like line can be traced.

If we �x the signal-to-noise level at 10 and change the number N of samples,
we obtain the three curves of Figure 13 (left). As we can see, the width of the
peak, to �rst order, is invariant with respect to the number N . This is somewhat
unexpected, because we may think that increasing the number of points would
improve the precision. If we keep �xed the number of samples but change the
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Figure 13. Left: the width of a line does not depend on the number
of samples. Right: the width of a line does not depend on the signal-
to-noise ratio.

signal-to-noise ratio from 10 to 1 to 1/10 (Figure 13, right), it happens the same
as before. Noise is also not a measure of precision.

We conclude that the width of a line of the periodogram does not depend on
either the number of observations or their signal-to-noise ratio. If it is frequencies,
we cannot give the reader a number plus minus an error.

38. What we can give instead is the false alarm probability of a peak. The idea
is to compare the height of a peak against the peaks of the background; in other
words, to quantify the signi�cance of a peak. The false alarm probability of a
peak is the probability that a dataset which is pure noise would have a peak of
magnitude equal to or greater than that of the peak in question.

Scargle (1982) proved that if the data is pure Gaussian noise, then the values
of the periodogram follow a χ2 distribution with 2 degrees of freedom, that is, a
decreasing exponential. Let's call Z a value of the periodogram at an arbitrary
frequency ω. Then the probability density function of Z is

pZ(z) = Prob(z < Z < z + dz) = exp(−z)dz. (37)

Therefore, the cumulative probability is

FZ(z) = Prob(Z < z) =

∫ z

0
pZ(z′)dz′ = 1− exp(−z), (38)

so the statistical signi�cance of a given power at a preselected frequency is

Prob(Z > z) = 1− FZ(z) = exp(−z). (39)

In other words, it becomes exponentially unlikely that such a power Z or greater
can be due to a chance noise �uctuation.

39. Now, let Zm be the value of the maximum peak of the periodogram. We are
now choosing a speci�c value of frequency among N values, not any frequency.
Then, the probability of that power being less than z will be that of one frequency
but to the power of N :

FZm(z) = Prob(Zm < z) = [1− exp(−z)]N , (40)
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and the statistical signi�cance of such a power will then be:

Prob(Zm > z) = 1− FZm(z) = 1− [1− exp(−z)]N . (41)

40. Finally, we want a value of z such that a maximum with this value of z has
a probability p of being obtained by chance. For this, we just need to solve for
z in the above expression:

z = − ln
[
1− (1− p)1/N

]
. (42)

Di�erent values of z for di�erent probabilities p can then be plotted along with
the periodogram to assess the signi�cance of the lines. In practice, the presence of
the window will make the powers at adjacent frequencies not independent, so we
have to estimate how many independent frequencies there are in the spectrum,
and replace the N of the exponent with this e�ective number. A good choice is
that proposed by Press et al. (1992), p. 570.
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Abstract. Wavelet analysis has been widely used to analyze time series
and has countless applications in astronomy. Because of its characteristics
it is a method that is well suited to approximate functions, eliminate
noise, detect points of change, discontinuities and periodicities. In this
article an introduction to the wavelet theory and its use in time series is
presented. Numerical simulations and some real examples are developed
in the software R.
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1. Introduction

Fourier transform is widely used in signal processing and analysis and for its
inherent characteristics it has had satisfactory results in the study of signals
that are periodic and regular enough, but the same is not true when their spectra
vary over time (non-stationary signals). If the function f(x) to be decomposed
is a time series, and we think to analyze it, we have to take into account that
the functions of the Fourier base are of in�nite duration in time, but local in
frequency. The Fourier Transform detects the presence of a certain frequency
but does not provide information about the evolution in time of the spectral
characteristics of the signal. Many temporal aspects of the signal, such as the
beginning and end of a �nite signal and the instant of appearance of a singularity
in an instant of time, cannot be adequately analyzed by Fourier analysis. Even
so, Fourier analysis is a cornerstone for the development of other mathematical
and statistical theories including Wavelet analysis. In the following subsection
we present the main concepts of Fourier analysis, which will be needed for the
reading of the rest of the Chapter.

1.1. Some Concepts From Fourier Analysis

In this section we will review some concepts of Fourier analysis necessary for the
following sections. Consider the space of all complex-valued functions f on R,
such that f is absolutely integrable (ie:

∫∞
−∞ |f(x)|dx < ∞) and denote it as

L1(R) (Härdle et al. (1998)). For f ∈ L1(R), de�ne the Fourier Transform of f
by

f̂(ξ) =

∫ ∞
−∞

e−iξxf(x)dx. (1)
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If f̂(ξ) is also absolutely integrable, de�ne the Inverse Fourier Transform by

f(x) =
1

2π

∫ ∞
−∞

eiξxf̂(ξ)dξ, (2)

at almost every point x. By extension, the Fourier transform can be de�ned for
any f ∈ L2(R) with

∫∞
−∞ |f(x)|2dx <∞.

Given a 2π-periodic function f on R, such that f ∈ L2(0, 2π) (
∫ 2π
0 |f(x)|2dx <

∞), it can be represented by its Fourier series by

f(x) =
∑
k

cke
ikx, (3)

where ck = 1
2π

∫ 2π
0 f(t)e−ikxdx is named the k-th Fourier coe�cient. By period-

icity, this holds for all x ∈ R.
Therefore there exists the basis of functions, {e−ikx}k, in L2(R), for which we

can write any function in L2(R) as an in�nite linear combination of the members
of this basis of functions. If we keep a �nite number of terms on the right hand
side of the equation (3), we will obtain an approximation of the function f(x).
Due to the characteristics of the Fourier series (the functions sin(x) and cos(x)
in e−ikx are non-zero over almost the entire domain), a large number of terms
in the series are needed to get a good approximation of f(x). In wavelet theory
an alternative basis of functions is sought that has the property of being able to
write any function in L2(R) as a series of the basis functions, but that they take
values close to 0 outside a bounded interval, which allows a local adjustment in
time and the use of few terms in the series to obtain a very good approximation
of f(x).

Let {ak}k∈Z denote an in�nite sequence of real or complex-valued variables
with the property that

∑∞
−∞ |ak|2 < ∞ what ensure that all the quantities we

deal with are well de�ned. Then the complex function given by

A(r) =
∞∑

k=−∞
ake
−i2πrk, (4)

is called the Discrete Fourier Transform (DFT) of {ak}k∈Z, where r ∈ R is
a variable known as frequency (see Percibal & Walden (2000)). For the inter-
pretation of the formula in equation (4), |r| is the number of cycles that the
sinusoidal curves in the real and imaginary terms of the function e−i2πrk =
cos(2πrk) − i sin(2πrk) (i.e. cos(2πrk) and − sin(2πrk), respectively), go over
when k sweeps from 0 to 1. Any negative frequency r will map to some posi-
tive frequency when a physical interpretation is required (see Percibal & Walden
(2000), Exercise [2.1]).

As intuition, if |A(r)| is large (small), then the sequences {ak} and {e−i2πrk}
have a good agreement (bad agreement).

The sequence {ak} can be reconstructed or recovered from its DFT, A(r),
by

ak =

∫ 1
2

− 1
2

A(r)ei2πrkdr, (5)



Wavelet Analysis for Time Series 129

where k ∈ Z. The larger the value of |A(r)|, the more important sinusoids of
frequency r are in reconstructing {ak}. If {ak} is a �nite sequence for instance
for k = 1, · · · , N , it is extended to k ∈ Z by de�ning ak = 0 for all k ≤ 0 and
k > N . In this case, A(r) =

∑N
k=1 ake

−i2πrk.

Filtering: In wavelets context it is often used the term ��lter". Consider
two in�nite sequences of real or complex-valued variables, {ak} and {bk}, satis-
fying

∑∞
k=−∞ |ak|2 < ∞,

∑∞
k=−∞ |bk|2 < ∞. The convolution of {ak} and {bk}

is given by

(a ∗ b)k =
∞∑

u=−∞
aubk−u. (6)

This de�nition led us to the notion of �ltering used in engineering. If we consider
{ak} in equation (6) as a �lter and {bk} as a sequence to be �ltered, then their
convolution, {(a∗b)k}, is the �ltered version of {bk}, �ltered by the sequence {ak}.
There are `low-pass' �lters that preserve low frequency components and attenuate
high frequency ones; and there are `high-pass' �lters that make the contrary.
Finally there is a cascade of �lters, involved in wavelet coe�cients computation
from data (see section 3), which is nothing more than the consecutive application
of a set of �lters to a sequence, one after the other.

1.2. Short Time Fourier Transform

An intermediate step between Fourier and Wavelet analysis was the use of the
Short Time Fourier Transform (STFT) to detect local phenomena in time. It per-
forms a time-dependent spectral analysis. The signal is divided into a sequence
of time segments (depending on a window de�ned for this purpose) in which the
signal can be considered as quasi-stationary and then the Fourier Transform is
applied to each segment. Window functions are used to perform this procedure.
To observe a signal over a �nite period of time, we multiply it by a window
function. The signal is divided into short fragments (short time intervals) delim-
ited in time, by means of a window function. The segments sometimes overlap.
Through the individual spectral analysis of each windowed segment, a sequence
of measurements or spectra is obtained, what constitutes the time-varying spec-
trum. The four most common window types are the Rectangular window, the
Hanning window, the Hamming window and the Blackman window.

Three kinds of examples where STFT has been applied are presented below:
two curves with marked periodicities that change according to the time instant
in Figure 1, two curves without periodicities in Figure 3 and one curve with
variable periodicity in Figure 4.

Figure 1 shows the STFT of two sinusoidal curves, a curve with three dif-
ferent periods and amplitudes:

f0(x) = sin(0.2πx), f1(x) = 1.5 sin(0.5πx), f2(x) = 2 sin(0.8πx),

for the upper left panel, and

f3(x) = sin(0.6x), f4(x) = 0.5 sin(0.5x), f5(x) = 2 sin(0.1x),
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for the lower left panel. In right panels of Figure 1 the computation of the
corresponding STFT is shown. Time-slices of length 80 are extracted from the
vector (in case of short vectors the window size is chosen so that 10 windows �t
in the vector). The shift of one time-slice to the next one is given by 24 (for short
vectors the increment is selected so that 30 increments �t in the vector). The
values of these time-slices are smoothed by multiplying them with a Hanning
window function. For these obtained windows, the Fast Fourier Transform1 is
computed. Then each window takes a segment of length 80 in time and is shifted
by 24 which produces 414 calculations of the Fast Fourier transform. Therefore a
matrix of 414 rows is produced where each row of the matrix contains the Fourier
coe�cients of one window which are plotted in a scale of 64 gray values, where
white corresponds to the minimum value and black to the maximum. The right
panel of the Figure 1 shows how the Fourier transform changes over time, which
gives an indication of the change in periodicity over time. This is an advantage
over the use of periodograms based on the Fourier transform in which the periods
present are shown but without indicating their variability over time (see Figure
2 where the Lomb Scargle periodogram of the sine wave 1 is displayed). With
wavelet analysis it will be possible to construct a time-sensitive measure, of the
STFT type, where on the ordinate axis the exact time is shown.

In the Figure 3 two curves and their STFT are shown. On the left upper
panel a Gaussian white noise is plotted. This curve is completely random with
no periodicities, therefore no time with a speci�c value is highlighted in its STFT
(right upper panel). On the left lower panel a sample of an Autoregressive Mov-
ing Average (ARMA) process with parameters (2, 2) is shown. This is a linear
model for time series analysis and together with Autoregressive Integrated Mov-
ing Average ARIMA and Continuous Autoregressive Moving Average CARMA
models have been used to model light curves in astronomy (Cáceres (2019), Ey-
heramendy et al. (2018), Kelly et al. (2014)). The ARMA process is a stationary
process with constant expectation and variance, so its representation contains
no trend or periodicity. As a consequence, the STFT is less random than that of
white Gaussian noise but with a time-varying Fourier transform. A curve with
time-varying periodicity is plotted on the left panel of Figure 4. It can be seen
that its STFT detects how the frequency decreases over time, although the exact
time at which the changes occur or the exact trend of change is not visible due
to the displacement of the windows used in the STFT calculation.

STFT allows that a certain location of a local phenomenon in a signal is
detected. However, only the time interval in which the local phenomena occur
will be known, since the location depends on the width of the window chosen.
Moreover, the events will not be able to be di�erentiated or found if they are
very close to each other, since it is not possible to distinguish di�erent behaviors

1Fast Fourier Transform: Calculating the DFT is time consuming and requires on the order
of N2 �oating point multiplications. As many of the multiplications are repeated by varying
the indexes, an e�cient algorithm is used, called Fast Fourier Transform (FFT) which consists
of a collection of routines designed to reduce the amount of redundant calculations. Di�erent
implementations of the FFT have di�erent features and advantages. One of the algorithms used
is the "split-radix" algorithm which requires approximately N log2(N) operations (Fischer-
Cripps (2002)).
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within the same window width. A mathematical tool to solve these problems is
the Wavelet Transform.

In this Chapter, the theory of Wavelet analysis is described in Section 2
including multiresolution analysis. Section 3 describes the Cascade Algorithm
and the discrete wavelet transform while Section 4 is devoted to continuous
wavelet transform and its applications. Finally, in Section 5 we present our
conclusions.

2. Theory of Wavelet Analysis

We can say that the theory of the analysis of the wavelets began with Mr. Joseph
Fourier (1807), with his theory of frequency analysis, today often referred to as
Fourier analysis. After 1807 and from the development of the Fourier convergent
and orthogonal systems, the notion of frequency analysis led to scale analysis.
The �rst mention of the wavelets appears in an appendix of the thesis of A. Haar
(1909). The wavelet theory was developed mainly in the 80's by Meyer (1986),
Daubechies (1988), Mallat (1989) and others.

Wavelets are used in a large number of applications, among them: astron-
omy, acoustics, nuclear engineering, sub-band code, signal and image processing,
neurophysiology, bioinformatics, genetics, music, magnetic resonance imaging,
classi�cation of words in a text, optics, fractals, seismic turbulence prediction,
radars, human vision, statistics (time series, correlations, stochastic processes,
point processes, non-parametric regression, regression with census data) and
mathematical applications such as: in pure frequency identi�cation, eliminating
signal noise, detecting discontinuities and cutting spots, detecting self-similarity
(fractals), compression of data.

In this Chapter the use of wavelets focuses on their application to time series
(i.e.: sequence of observations indexed on an ordered set of indices I which can
be a discrete set of values such as integers or a subset of the real line, based on
an independent variable t ∈ I). The variable t can be taken as time, depth, or
distance along a line, among others. Examples of set of indexes are I = (0,+∞),
that is, all t > 0 are possible indexes, and I = {0, 1, 2, · · · , n}, where n can be
any integer greater than 2.

The main points of the theory of wavelet analysis are developed to later an-
alyze its use in applications through approximations, scalograms built from the
wavelet transform, signal reconstruction, among others. The Wavelet Transform
is e�cient for the local analysis of locally changing and non-stationary signals
and, like the Windowed Fourier Transform2, assigns a time-scale representation
to the signal. The time aspect of the signals is under consideration. The main
di�erence with STFT is that the Transformed Wavelet has multiresolution anal-
ysis with variable windows. The analysis of higher range frequencies is done
using narrow windows and the analysis of lower range frequencies is done using
wide windows (Poularikas, 2010).

2Short Time Fourier Transform
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Figure 1. Examples of STFT. On the left panels, it can be seen two
di�erent sinusoidal curves and on the right panels their STFT. First,
time segments of a �xed length are extracted from the data vector.
This window is moved along the time axis by a �xed amount possibly
smaller than the window size, which may produce an overlap between
the time segments. The values of these time intervals are smoothed by
multiplying them by a speci�ed window function. For the windows thus
obtained, the fast Fourier transform is calculated. For the data in the
�gure, segments of 80 time units were used. They were incremented
by 24 units to obtain the next segment, which produced overlapping
segments, yielding 414 windows. For each window 64 Fourier coe�cients
were calculated. The �gure shows: on the x-axis the 414 windows and
64 cells on the vertical axis of each window which were colored with
a gray scale according to the magnitude of the Fourier coe�cients. In
the �gure only the cells with gray colors are observed, the rest are only
white. The dark regions in the graph correspond to high values of the
coe�cients at the particular time/frequency location.
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Figure 2. In the �gure the Lomb Scargle periodogram of Sine wave 1
is shown. The frequencies of the curve 0.1 and 0.4 are clearly evidenced
and more weakly the frequency 0.25.

Wavelets (small waves) are families of functions which, if they are translated
and dilated, allow us to obtain an orthogonal base of functions in L2(R). A linear
combination of the elements of this base of wavelet functions is used to represent
a signal f(t).

The classical Fourier analysis has been widely used in the problem of recon-
structing a function f from dilations of a �xed sinusoidal function x 7→ e2πix,
when writing f(x) =

∫
e2πiξxf̂(ξ)dξ. The Fourier transform, f̂(ξ), is considered

the amount of sinusoidal oscillation e2πiξx present in the function f . Sinusoidal
function bases are also used in Fourier series.

In the same way the wavelet basis of functions allows us to reconstruct the
original signal through the inverse Wavelet Transform. There are several base
wavelet functions, depending on the chosen family: Haar, Daubechies, Morlet,
Symmlets, among others. Depending on the selected wavelet family, a di�erent
base function is used (�rst brick in the construction) and a certain base of func-
tions is obtained which will allow the wavelet analysis to be performed. The
main advantage of Wavelet analysis is that it is not only local in time, but also
in frequency.
This feature allows using the continuous wavelet transform to detect an event in
the data, either the period of a time series, a change point in the series, a dis-
continuity in a density function, and to know the moment (time) or abscissa at
which it occurs. For example, knowing the time interval during which a detected
period is present in the brightness measurements in a light curve, the moment
when the �ow of a river changes drastically, the day when an economic variable
produces a change in its modeling.

Another feature of a wavelet functions basis is that any function in the
function space L2 can be decomposed as an in�nite sum of functions in the
wavelet basis, as with the Fourier series, but because of their great �exibility to
approximate functions e�ciently only a small number of summands are needed
to produce very good approximations. The latter is because wavelet functions
vanish outside a bounded interval and the basis of functions is formed by a count-
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Figure 3. Examples of STFT: The upper panel shows a curve of 500
data points from a Gaussian white noise and its STFT. In the lower
panel, the plots show the curve of a sample from an ARMA (2, 2) process
and its STFT. For the data in the upper right panel of the �gure,
segments of 50 time units were used. They were incremented by 16
units to obtain the next segment, which produced overlapping segments,
yielding 29 windows. For each window 64 Fourier coe�cients were
calculated. The �gure shows: on the x-axis the 29 windows and 64
cells on the vertical axis of each window which were colored with a
gray scale according to the magnitude of the Fourier coe�cients. The
dark regions in the graph correspond to high values of the coe�cients
at the particular time/frequency location. In the lower right panel,
segments of 6 time units with increments of 2 units were used, yielding
29 windows.
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Figure 4. On the left panel, it can be seen a curve with periods
varying over time and on the right panel its STFT, built from segments
of 80 time units with increments of 24 units, yielding 39 windows on
the x-axis. On the vertical axis of each window 64 cells were colored
with a gray scale according to the magnitude of the Fourier coe�cients.
In this �gure the dark regions, corresponding to a high magnitude of
the Fourier coe�cient, sweep across an interval as they move through
time.

able number of dilations and contractions of a wavelet function called �parent",
stretches and squashes of those functions and translations of all of them. This is
equivalent to having bricks of various sizes and widths that can be placed under
any house and that adding up all the volumes will give exactly the same volume
of the house.

In the next section we will be introduced to multiresolution analysis, the
main feature of wavelet analysis, which will allow us to de�ne a basis of wavelet
functions in L2(R) with which we can represent any function f(x) in L2(R)
through an in�nite countable linear combination of the basis.

2.1. Multiresolution Analysis

Wavelets can be considered as a basis of functions generated by dilations and
translations of a simple function which, in general, is not sinusoidal. They are
connected to the notion of multiresolution analysis (MRA) in which the objects
(signals, functions, data) can be examined using several levels of approach, as if
zooming in and out. In both cases we can obtain relevant information about the
object. As an example, suppose we are looking at a house, the observation can
be made from a large distance from where only the basic shapes and structure
can be distinguished (if it has a garage, the shape of the roof); or one can observe
from a closer distance and various other characteristics of the house will appear
(the door is made of hardwood, for example).

The basis function will be generated from a basic function that is usually
called parent wavelet or scaling function, which in turn allows us to build another
basic function that we will call mother wavelet or wavelet function. The repre-
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sentation of a function f(x) will be done through two summands: the sum of the
dilations and translations of the father wavelet, ϕ(x), will give us information
about the general, coarse aspects (a kind of smoothing) of the f(x) and the sum
of the dilations and translations of the mother wavelet, ψ(x), will give us infor-
mation about the particular aspects and details (like a zoom) of the function.
Each term in the second summand will add more clarity on the speci�c features.

In this section some basic concepts such as wavelet father, which provides
smoothing, and wavelet mother, to describe the details, are de�ned to reach the
multiresolution analysis de�nition. In the following it will be assumed that the
function to be analyzed is a function of time t.
For ϕ ∈ L2(R), k ∈ Z, x ∈ R, we denote ϕ0k(x) = ϕ(x − k) the family of
translations of ϕ and we denote

ϕjk(x) = 2
j
2ϕ(2jx− k), j, k ∈ Z,

the family of translations and dilations of ϕ with the indexes k and j respectively.
The functional sub-spaces {Vj}j∈Z, Vj ⊆ L2(R) are de�ned by:

• for j = 0:

V0 =

{
g ∈ L2(R) : g(x) =

∑
k

ckϕ(x− k),
∑
k

|ck|2 < +∞

}

that is, V0 is the subspace spanned by the translations of ϕ(x) by k,
ϕ(x− k).

• and for j ∈ Z:
Vj =

{
h(x) = g(2jx) : g ∈ V0

}
.

Then h(x) ∈ Vj1 if h(x) =
∑
k

ckϕ(2j1x − k) for {ck} such that
∑
k

|ck|2 <

+∞, or, Vj1 is the subspace spanned by the functions {ϕ(2j1x− k)}k∈Z.

Therefore ϕ generates the sequence of subspaces {Vj}. The sequence {Vj}
is called multiresolution analysis if

1. {ϕ0k} is an ortonormal system in L2(R),

2. the subspaces are nested, that is,

Vj ⊂ Vj+1, j ∈ Z, (7)

3. every function in L2(R) can be obtained as a limit of a sequence of functions
in
⋃
j≥0

Vj , that is, every function f ∈ L2(R) can be written as a series of

elements in
⋃
j≥0

Vj .

In this case, ϕ is called Wavelet father. Another sequence {Wj}j∈N0 is
considered such that Wj is the orthogonal complement of Vj ⊆ Vj+1, Wj =
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Vj+1 	 Vj , then
⋃
j≥0

Vj = V0 ∪ (V1 	 V0) ∪ (V2 	 V1) · · · ∪ (Vj+1 	 Vj) · · · . Then⋃
j≥0

Vj = V0 ⊕
∞
⊕
j=0

(Vj+1 	 Vj) is a direct sum of sub-spaces that completes L2(R)

leading to

L2(R) = V0 ⊕
∞
⊕
j=0

Wj ,

therefore any function f(x) in L2(R) can be written as a linear combination of
functions in V0 and {Wj}. For each j ∈ N0, let ψ be a function such that its
translations and dilations, {ψjk = 2j/2ψ(2jx−k), k ∈ Z}, are an orthogonal basis
ofWj . Then, for instance, the translations {ψ0k(x) = ψ(x−k)}k is an orthogonal
system of W0, this system is orthogonal to V0 and V1 = V0⊕W0 is the subspace
spanned by the system {{ϕ0m}m, {ψ0k}k}, where ϕ0m(x) = ϕ(x−m) for all m.

As a consequence, each function f(x) can be represented as a convergent
series given by

f(x) =
∑
k∈Z

αkϕ0k(x) +

∞∑
j=0

∑
k∈Z

βjkψjk(x), (8)

where
αk =

∫
f(x)ϕ0k(x)dx, βjk =

∫
f(x)ψjk(x)dx. (9)

According to the function f(x) sometimes it is necessary to start with a
subspace Vj0 with j0 > 0, in that case, the �rst function in the sum, ϕ0k(x), is
replaced by ϕj0k(x) and the index j starts at j0 > 0 in the right term of equation
(8).

The representation of f(x) as an expansion of translations and dilations of
functions ϕ and ψ is called wavelet expansion and ψ the Wavelet mother.

Each Wj in the sequence of sub-spaces {Wj} represents a resolution level of
the multiresolution analysis. There are several levels j of resolution, what gives
rise to its name.
The resolution level means a zoom level that is performed on the function, so
each one will allow you to see details at di�erent scopes. Thus the function is
decomposed into an initial smoothing, given by the parent wavelet in the �rst
term of the right-hand side of eq. (8) and di�erent levels of details that are added
according to the value of the level j in the second term of the right side. The
greater the value of j, the greater the level of resolution and the �nest details
will be visible, which will be represented by the j-th term.

An example of wavelet system is the Haar system. The wavelet father and
wavelet mother are given by

ϕ(x) = I(0,1] (x) , ψ(x) = −I[0, 12 ](x) + I( 1
2
,1] (x) , (10)

respectively, where

IA (x) =

{
1 if x ∈ A
0 if x /∈ A
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and the interval (a, b] is the set of real numbers between a and b, including b but
not a. The basis of functions for the Haar wavelet system are:

ϕ0k(x) = {I(0,1] (x− k)}k∈Z,

ψjk(x) = 2j/2
(
I( 1

2
,1]
(
2jx− k

)
− I[0, 12 ](2

jx− k)
)
,

for wavelet father and mother respectively, where j, k ∈ Z, j ≥ 0. We can observe
that {ϕ0k(x)}k∈Z is an orthonormal basis (ONB, i.e.: a basis of orthogonal and
normalized vectors) in

V0 = {h(x) ∈ L2(R) : h(x) is constant on (k, k + 1], k ∈ Z},

{ϕjk(x) = 2j/2ϕ(2jx− k)}k∈Z is an ONB in

Vj = {h(x) ∈ L2(R) : h(x) = g(2jx), g(x) ∈ V0},

Vj ⊆ Vj+1 and Vj = Vj−1⊕Wj−1, where Wj is spanned by {ψjk(x)}k∈Z. Finally,
L2(R) = V0 ⊕W0 ⊕W1 ⊕ · · ·Wj ⊕ · · · .

By way of illustration,

1. {ϕ0k(x)} is an ONB of V0.

2. V1 = {h(x) ∈ L2(R) : h(x) = g(2x), g(x) ∈ V0} = {h(x) ∈ L2(R) :
h(x) is constant on (k2 ,

k+1
2 ], k ∈ Z} and it is spanned by the ONB

{ϕ0k(x), ψ0k(x) = I[0, 12 ](x− k)− I( 1
2
,1] (x− k)}.

3. The functions ϕ1k(x) = 21/2ϕ(2x−k) for k ∈ Z span V1 and can be written
in terms of {ϕ0k(x)} and {ψ0k(x)}, since V1 = V0 ⊕W0. For instance:

ϕ10(x) =
√

2I(0, 12 ](x) =

√
2

2
(I(0,1] (x)−I[0, 12 ](x)+I( 1

2
,1] (x)) =

1√
2

(ϕ00−ψ00),

ϕ11(x) =
√

2I(0,1](2x− 1) =
1√
2

(ϕ00 + ψ00).

A suitable property of the Haar wavelets is that they are cancelled out of a
limited interval. Unfortunately, Haar wavelets are not continuously di�erentiable
which limits their applications (see Figure 5). There are wavelet families with
compact support (vanish out of an interval) and wavelet families de�ned over
the whole line. Among the former wavelet families are Daubechies, Coi�ets,
Symmlets. Some examples of the last ones are the Battle-Lemarié and Morlet
wavelets.

Father and mother wavelets can be de�ned from some of the properties of
their Fourier transforms (see Härdle et al. (1998)).
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Figure 5. Some representations of Haar wavelet. On the top panel it
is shown Haar father wavelet for (a) j = 0, k = 0, (b) j = 0, k = 1, (c)
j = 1, k = 1/2. On the bottom panel it is shown Haar mother wavelet
for (d) j = 0, k = 0, (e) j = 0, k = 1, (c) j = 1, k = 1.

2.2. Obtaining a Wavelet Expansion

In this section the conditions about functions ϕ and ψ that guarantee the exis-
tence of a wavelet system are formulated. That is to say, what characteristics
should have so that ϕ0k is an orthogonal and normalized system, the Vj are
nested, the span of

⋃
j
Vj is equal to L2(R), ψjk is an orthogonal and normalized

system of Wj , etc. This section follows closely Härdle et al. (1998).

Properties on ϕ̂, the Fourier transform of ϕ, are sought that guarantee the
validity of the necessary and su�cient conditions for the wavelet expansion:

1. {ϕ0k, k ∈ Z} is an orthonormal system (ONS)

2. Vj ⊂ Vj+1, j ∈ Z

3.
⋃
j≥0

Vj is dense in L2(R) (i.e.: the linear combinations of functions in
⋃
j≥0

Vj

span all the functional space L2(R)).

4. {ψ(x− k), k ∈ Z} is an ONB in W0.

In what follows functions ϕ, that satisfy that there is a constant M > 0
such that

∑
k∈Z
|ϕ(x− k)| < M for x ∈ R − A, will be considered, where A is a

null measurement set.
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The following results that allow characterizing the father wavelet and the
mother wavelet from properties of their Fourier transform can be demonstrated
(see Härdle et al. (1998)).

(a) Set ϕ ∈ L2(R). The system {ϕ0k, k ∈ Z} = {ϕ(x− k), k ∈ Z} is an ONS if
and only if, ∑

k∈Z
|ϕ̂(ξ + 2πk)|2 = 1, (11)

almost everywhere (a.e.), where ϕ̂ is the Fourier transform of the function
ϕ.

(b) The sub-spaces {Vj , j ∈ Z}, spanned by translations and dilations of ϕ, are
nested Vj ⊂ Vj+1, j ∈ Z, if and only if, there exists a 2π - periodic function
m0 ∈ L2(0, 2π) such that

ϕ̂(ξ) = m0

(
ξ

2

)
ϕ̂

(
ξ

2

)
, a.e. (12)

Moreover, |m0(ξ)|2 + |m0(ξ + π)|2 = 1 a.e.

(c) If ϕ satis�es items (a) and (b) above then
⋃
j≥0

Vj is dense in L2(R).

(d) If ϕ is a father wavelet that generates a MRA in L2(R), m0(ξ) is a solution
of equation (12) then

ψ̂(ξ) = m1

(
ξ

2

)
ϕ̂

(
ξ

2

)
(13)

is the Fourier transform of a mother wavelet ψ, wherem1(ξ) = m0(ξ + π)e−iξ

and the bar represents the complex conjugate.

In summary, to construct a father wavelet ϕ for a MRA, su�cient conditions
on its Fourier transform ϕ̂ should satisfy the following restrictions:∑

k∈Z
|ϕ̂(ξ + 2πk)|2 = 1, a.e.,

ϕ̂(ξ) = m0

(
ξ

2

)
ϕ̂

(
ξ

2

)
,

where m0 ∈ L2(0, 2π) is a periodic function of period 2π such that |m0(ξ)|2 + |m0(ξ + π)|2 = 1,

m0(0) = 1,
(14)

where the last restriction in equation (14) is deduced of eq. (12) after adding
the condition |ϕ̂(0)| = |

∫
ϕ(t)dt| = 1 for the father wavelet.
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Since V0 ⊂ V1, then ϕ ∈ V1 and it can be written as a linear combination of
the system {

√
2ϕ(2x − k)}, an ONB of the subspace V1. Therefore, there is a

sequence {hk} such that

ϕ(x) =
√

2
∑
k∈Z

hkϕ(2x− k), hk =
√

2

∫
ϕ(x)ϕ(2x− k)dx, (15)

with
∑
k∈Z
|hk|2 <∞ and the constraints

1.
∑
k

hkhk+2l = δ0l

2. 1√
2

∑
k

hk = 1.

where δ0l = 0 if l 6= 0 and δ0l = 1 if l = 0. By the same argument the mother
wavelet satis�es

ψ(x) =
√

2
∑
k

λkϕ(2x− k), (16)

where λk = (−1)k+1h1−k.
Taking Fourier transform to both sides of left equation in (15) we obtain

ϕ̂ = 1√
2

∑
k hke

−iξk ϕ̂
2 and by eq. (12) we have that

m0(ξ) =
1√
2

∑
k

hke
−iξk. (17)

If the wavelets considered are compactly supported (i.e.: they vanish outside
a bounded interval), the sums in eqs. (15), (16) and (17) have a non-zero number
of terms. These relations allow us to determine the coe�cients in eq. (9) of a
function in its wavelet representation in eq. (8) through a linear transformation
given by the product of a matrix by a vector.

Compactly supported wavelets

Some of the wavelet families with compact support are the Daubechies,
Coi�ets and Symmlets. We brie�y describe each of them.
Ingrid Daubechies, to whom we owe the original construction of Wavelets with
compact support (Daubechies (1988)), proposed to take m0(ξ) such that

|m0(ξ)|2 = cN

∫ π

ξ
sin2N−1(x)dx, (18)

where the constant cN is chosen to produce m0(0) = 1. For such functions
m0(ξ) the coe�cients {hk} are tabulated (see Daubechies (1988) or Härdle et al.
(1998)). Wavelets constructed from the function m0(ξ) satisfying eq. (18) are
called Daubechies Wavelets and they are denoted D2N or Db2N .



142 A.Christen

For N = 1, we have D2 where cN = 1
2 and

|m0(ξ)|2 =
1

2

∫ π

ξ
sin(x)dx =

1 + cos(ξ)

2
.

Choosing m0(ξ) = 1+e−iξ

2 we obtain

ϕ̂(ξ) = lim
n→∞

n∏
j=1

1

2
(1 + e

− iξ

2j ) =
1− e−iξ

iξ
,

hence Daubechies father wavelet D2 matches with Haar father wavelet, ϕ(x) =
I{x ∈ (0, 1]}.

The supports of Daubechies father wavelet and mother wavelet are included
in the intervals [0, 2N − 1] and [−N + 1, N ], respectively. Besides, Daubechies
mother wavelet has null m-moment (i.e.:

∫
xmψ (x) dx = 0) for m = 0, ..., N −1.

Beylkin et al. (1991) proposed a new class of wavelets with essentially the
same good properties of the Daubechies wavelets and, in addition, the father
wavelet has some zero moments. If the father wavelet has certain null moments
the wavelet coe�cients could be approximated by evaluations of the function
f(t) at discrete points:

αjk = 2−j/2f

(
k

2j

)
+ rjk,

with rjk small enough. This can be a useful property in applications.

This class of wavelets was called Coi�ets Wavelets and is denoted CK. To
build the Coi�ets wavelets, Beylkin et al. (1991) consider m0(ξ) of the form

m0(ξ) =

(
1 + e−iξ

2

)2K

P1(ξ),

where

P1(ξ) =

K−1∑
k=0

CkK−1+k

(
sin2

(
ξ

2

))k
+

(
sin2

(
ξ

2

))K
F (ξ),

and F (ξ) is a trigonometric polynomial chosen such that |m0(ξ)|2+|m0(ξ+π)|2 =
1. The supports of Coi�ets father wavelet and mother wavelet are included in
the intervals [−2K, 4K − 1] and [−4K + 1, 2K], respectively.

According to Daubechies (1992) the only symmetric wavelet with compact
support is the Haar system (father wavelet). The family of Symmlet Wavelets is
made up of wavelets for which m0(ξ) is chosen to be close to symmetry. They are
denoted by SN, where N is the order of the wavelet. Symmlet mother wavelet
has null m-moment (i.e.:

∫
xmψ (x) dx = 0) for m = 0, ..., N − 1. The support

of the father wavelet and mother wavelet are the intervals given by [0, 2N − 1]
and [−N + 1, N ], respectively.
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3. Cascade Algorithm

Some recursive formulas are presented that will allow the calculation of the
wavelet coe�cients sequentially (see Härdle et al. (1998)). The procedure is
called Cascade algorithm (or pyramidal). It was proposed by Mallat (1989).

This method (Härdle et al. (1998)) is used only with wavelet bases that van-
ish outside a �nite interval and built from the function m0(ξ) = 1√

2

∑
k hke

−ikξ

(see eq. (17)) where hk are coe�cients of real values with only a �nite number
of non-zero values. This assumption is satis�ed by the families of Daubechies,
Coi�ets and Symmlets wavelets, among others.

Given a function f(t), the coe�cients αjk =< f, ϕjk >, βjk =< f, ψjk >
satisfy for j, k ∈ Z the relationships:

αjk =
∑
k

hl−2kαj+1,l, (19)

βjk =
∑
k

λl−2kαj+1,l (20)

where λk = (−1)k+1h1−k and {hk} are the coe�cients of m0(ξ).

Indeed, by multiresolution analysis,

βjk = 2
j
2

∫
f(x)ψ(2jx− k)dx

= 2
j+1
2

∑
s

λs

∫
f(x)ϕ(2(2jx− k)− s)dx

= 2
j+1
2

∑
s

λs

∫
f(x)ϕ(2j+1x− 2k − s)dx

=
∑
s

λsαj+1,s+2k =
∑
l

λl−2kαj+1,l.

The relation (19) is obtained in a similar way. The cascade algorithm is
de�ned by both equations (19) and (20).

Only a �nite number of coe�cients αjk are non-zero in each level j. There-
fore if the vector of coe�cients, y = {αj1l} is known for a certain level j1, it is
possible to recursively rebuild the coe�cients αjk, βjk for levels j ≤ j1, with the
use of the recursive equations (19) and (20).

If the procedure stops at level j0, the vector of resulting wavelets coe�cients
w = ({αj0k}, {βj0k}, ..., {βj1−1,k})t can be computed by

w =Wy, (21)

where W is a matrix.
It is possible to invert the cascade algorithm to obtain the values of the

coe�cients y, starting from w by the recursive scheme:
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αj+1,s =
∑
k

hs−2kαj,k +
∑
k

λs−2kβj,k, (22)

allowing j to vary from j0 to j1 − 1.

3.1. Discrete Wavelet Transform

Given the initial values {α(K, k), k = 0, ..., 2K − 1} the Discrete Wavelet Trans-
form (DWT) recursively calculates the coe�cients α(j, k) and β(j, k) for 0 ≤
k ≤ 2j − 1 and 0 ≤ j ≤ K − 1, in the following manner:

α(j, k) =
∑
l

hl α(j + 1, (l + 2k) mod 2j+1), (23)

β(j, k) =
∑
l

λl α(j + 1, (l + 2k) mod 2j+1). (24)

where (l + 2k) mod 2j+1 denotes3 the remainder of dividing (l + 2k) by 2j+1.
Therefore the DWT is just a composition of linear orthogonal transformations
presented by the recursions (23) and (24). These recursions can be extended to
k ∈ Z and these extensions are periodic, in the sense that α(j, k) = α(j, k +
2j), β(j, k) = β(j, k + 2j) for all k ∈ Z.

The Discrete Inverse Wavelet Transform is de�ned in a similar way but with
the data periodically extended. It starts with the vectors:

{α(j0, k), k = 0, ..., 2j0 − 1}, {β(j0, k), k = 0, ..., 2j0 − 1}

and its periodic extensions are denoted by {α̃(j0, k), k ∈ Z}, {β̃(j0, k), k ∈ Z}.
Then the vectors {α(j, s), s = 0, ..., 2j − 1} are computed until level j =

K − 1, following the recursive equations:

α̃(j + 1, s) =
∑
k

hs−2k α̃(j, k) +
∑
k

λs−2k β̃(j, k), s ∈ Z, (25)

α(j + 1, s) = α̃(j + 1, s), s = 0, ..., 2j+1 − 1. (26)

4. Continuous Wavelet Transform

The continuous wavelet transform is a wavelet transform where the dilation and
translation parameters, named a and b in this case, vary continuously over R with
a 6= 0 (Daubechies (1992)). Given the wavelet ψ ∈ L2(R) such that

∫
ψ(t)dt = 0

and a function f ∈ L2(R), the Continuous Wavelet Transform (CWT), Tf , of
f(t), with a 6= 0 and b ∈ R is de�ned by

3The remainder of dividing x by y is usually expressed as xmod y.
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(Tf)(a, b) = |a|−1/2
∫
dtf(t)ψ̄

(
t− b
a

)
. (27)

The expression (27) computes the inner product in L2(R) of the function f
against the family of functions, {ψa,b}, indexed by the parameters a, b, de�ned
by

ψa,b(s) = |a|−1/2ψ(
s− b
a

) (28)

where a 6= 0 and b ∈ R. The inner product is de�ned by < f, g >=
∫
dtf̄(t)g(t),

where f̄(t) is the complex conjugate of f(t).

When a changes and b remains �xed, ψa,b(s) = |a|−1/2ψ( sa) covers di�erent
frequency ranges. Changing the parameter b allows moving the location in time
(x-axis or time-axis), every ψa,b(s) is located around of s = b.

If ψ ∈ L2 and that satis�es the following condition of admissibility

0 < Cψ = 2π

∫ ∞
−∞

dξ|ξ|−1|ψ̂(ξ)|2 <∞, (29)

where ψ̂ is the Fourier transform of ψ (see eq. (1)), then the function f can be
reconstructed from its CWT using the equation:

f = C−1ψ

∫ ∞
−∞

∫ ∞
−∞

da · db
a2

< f,ψa,b > ψa,b, (30)

where ψa,b(s) = |a|−1/2ψ( s−ba ), and <,> denotes the inner product in L2. The
constraint (29) is satis�ed if ψ ∈ L1(R) (i.e.:

∫
|f(t)|dt <∞) and

∫
ψ(x)dx = 0

since under this assumption ψ̂ is continuous, then to get Cψ < ∞ is su�cient
that ψ̂(0) = 0, or equivalently,

∫
ψ(x)dx = 0.

As an example consider the Haar mother wavelet ψ(x) given in equation
(10). For a > 0 we have

ψa,b(x) =
1√
|a|

(
−I[b,b+a

2 ](x) + I(b+a
2
,b+a] (x)

)
,

and the CWT

(Tf)(a, b) =
1√
|a|

(∫ b+a

b+a
2

f(t)dt−
∫ b+a

2

b
f(t)dt

)
.

For a < 0 the CWT is developed in a similar way. In the context of CWTs,
some of the most frequently used wavelet families are real and complex Mor-
let wavelet, real and complex Mexican hat wavelet, real and complex Shannon
wavelet, among others.

The Morlet Wavelet or Gabor wavelet (Daubechies (1992)), is a continuous
wavelet depending on parameter σ. Its Fourier transform, ψ̂, is a displaced
Gaussian, tuned somewhat so that ψ̂(0) = 0,

ψ̂(ξ) = π−
1
4

(
e−(ξ−ξ0)

2/2 − e−(ξ2+ξ20)/2
)
, (31)
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ψ(t) = π−
1
4

(
e−iξ0t − e−ξ20/2

)
e−

t2

2 , (32)

where ξ0 is often chosen as π
(

2
ln(2)

)1/2
' 5.336 or ξ0 = 5 for simplicity. The

Morlet wavelet for ξ0 = 5 is shown in Figure 6. This wavelet can be found in its
complex version or in a real-valued version.
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Figure 6. Morlet mother wavelet for ξ = 5 is shown in blue colour.

The Mexican hat wavelet or the Ricker wavelet is the second derivative of
the Gaussian e−x

2/2 and is de�ned by

ψ(x) =
2√
3
π−1/4(1− x2)e−x2/2

after normalization to get ||ψ||2 = 1 (L2(R)-norm) and ψ(0) > 0. Its plot is rem-
iniscent of a cross section of a Mexican hat. The complex Mexican hat wavelet is

formulated in terms of its Fourier transform given by ψ̂(ξ) = 2
√

2
3π
−1/4ξ2e−

1
2
ξ2I(0,+∞)(ξ).

The Fourier transform of the Shannon wavelet (Mallat (1998)) is the follow-
ing:

ψ̂(ξ) =

{
e−

iξ
2 if ξ ∈ [−2π,−π] ∪ [π, 2π]

0 otherwise

and the continuous wavelet is ψ(x) = sin(2π(t−1/2))
2π(t−1/2) − sin(π(t−1/2))

π(t−1/2) . This wavelet

has in�nite continuous derivatives with decay as 1
t at in�nity due to the discon-

tinuities of ψ̂(ξ) at ξ = ±π and ξ = ±2π.

4.1. Scalogram

The scalogram, a graph of the absolute value of the CWT, |Tf |, as a function of
time, is used for di�erent types of analysis. Color levels (high values of |Tf | are
in red) or gray levels are used (high values of |Tf | are in black, zero in white) and
a−1 is plotted on the ordered (y-axis). Some applications of the scalogram include
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period detection in time series, change point detection, function discontinuity
detection, signals recovering, among others. In all cases, the wavelet transform
can detect the location in time of the event found.

The CWTs of 4 time series examples are shown below. They were done with
the package Wavecomp in R 4 that uses Morlet wavelet family. In the scalogram,
a range of colors appears related to the p-value obtained from a hypothesis test
that is carried out via simulations:

H0: There is no joint periodicity.

When H0 is rejected, it indicates a great possibility that the periodicity is
present in the data set. Given a level of signi�cance, for example 0.01 or 0.05,
the null hypothesis will be rejected if the p-value is smaller than the level of
signi�cance chosen. The scalogram shows the CWT values for each time and
period in a range of colors from blue to red and a black contour line where the
maximum values of the CWT are found for each instant of time. This black line,
like the red regions, is found at the times and periods of highest wavelet power
levels, where H0 is rejected.

The �rst example is a sinusoidal data set with a period P=50. In Figure
7 you can see, from left to right, the original signal, the scalogram (with the
period on the y-axis) and the reconstruction of the signal from the CWT. In this
example 'Time' and 'Index' on the x-axis correspond to the step of time of the
curve. In the middle panel, you can see that the CWT detects the period of 50
of the signal.

In Figure 8 the second example is showed: a signal with a variable period
between P = 20 and P = 100. In this �gure, from left to right, the original
signal, the scalogram (with the period on the y-axis and the time step on the
x-axis) and the reconstruction of the signal from the CWT can be seen. In the
center panel of the �gure, it is shown how the scalogram detects the variable
period of the signal, its tendency and the reconstruction of the signal on the left
panel is quite accurate. We can compare the performance of the scalogram with
the STFT showed on the right panel of Figure 4.

In Figure 9, a signal with two periods: P = 30 and P = 80, both along
all the range, is shown. In the �gure, from left to right, the original signal, the
scalogram (with the period on the y-axis and the time step called 'Index' on the
x-axis) can be observed. On the right panel, it is easy to see two zones in red
with a black line across indicating the two periods present in the signal.

Figure 10 shows a signal with two periods: P = 30 and P = 80, in separate
intervals of time. On the right panel, it is simple to see two intervals of time
with two di�erent periods for the signal. The CWT can detect the instant of
time when the change of period occurs.

In the four examples presented, some of the potentialities of the CWT can
be observed: it can detect one or more periods present in the curve and indicate
the time interval in which the detected period in�uences the behavior of the
time series as well as it can detect the points of change where the change between

4https://cran.r-project.org/web/packages/WaveletComp/WaveletComp.pdf
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periods occurs. All of these are regarding an evenly sampled time series. Because
of this, for 55 Cyg light curve (from TESS mission) a partition of the data is
made and they are analyzed separately obtaining the scalograms in Figure 12.
Although each partition still has irregularly sampled data, the time di�erences
between the measurements are quite similar allowing the use of the Wavecomp
package which is for equidistant time series.
Figure 12 shows two signi�cant periods (solid black lines). A �rst period p1 that
starts with a value 2 ≤ p1 ≤ 4, grows in time and stands at p <≈ 4 at the end
of the time interval (right panel); and a local in time period p = 2 that appears
during the middle time of the �rst part of the data (middle panel) and decreases
to a value just below 2 during the second part (right panel).

The graph is seen divided into two regions, one with brighter colours and
the other with fainter colours. It corresponds to the cone of in�uence, described
in Lenoir & Cruci�x (2018), the wavelet analysis extends a little at the edges
of the time series, due to the wavelet support (values where the wavelet is not
null) then a part goes beyond after the last point of the time series, or before
the �rst point of the time series. Due to this, one half cone is removed from the
left end and another from the right end, from the area under analysis, producing
the region with fainter colors. This situation is present in each of the plots but
is more evident in this �gure.

For data with time di�erences between more irregular measurements it is
recommended to look for other alternatives. Some of them are listed below.
Developments have been made by interpolating the data to obtain equispaced
data (see for instance Thiebaut & Roques (2005)) or in other cases the con-
tinuous wavelet transform has been used on the raw data (Lenoir & Cruci�x
(2018)). Foster (1996) proposed the use of the weighted wavelet Z transform
to face this problem. In his work the author proposed an adaptation of wavelet
analysis for irregularly spaced data called Weighted Wavelet Z transform (WWZ-
transform). It consists of analyzing the data through projections of the Morlet
mother wavelet, which add up with some speci�c weighting. Foster (1996) showed
the e�ciency of the method in some signals although its limitation consists in
detecting periods and amplitudes when the gap in data is larger than the pe-
riod to be detected. WWZ transform proved good performance discerning in
frequency and time, period and amplitude of long-period stars in presence of
unevenly data.

According to Lenoir & Cruci�x (2018), interpolation procedures can signi�-
cantly a�ect the results especially when hypothesis testing is used. The authors
proposed a method to analyzed unevenly time series by means of the scalogram
of wavelet analysis without interpolation of the data. The authors proposed
to use projections of the continuous Morlet mother wavelet, without weighting,
and implemented his methodology in the WEAVEPAL software (developed on
Python 2, Lenoir & Cruci�x (2017)). The method seems e�cient as long as the
length of the intervals without observations is little variable. It is also observed
as a limitation the inability to detect periods when the gap is larger than the
period to be detected.

Tarnopolski et al. (2020) argue that irregular data makes it di�cult to cal-
culate certain magnitudes and introduces spurious peaks in the power spectral
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density. To solve this problem the authors propose to interpolate the data to
make them regular using a method based on the ARMA time series model called
MIARMA.
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Figure 7. The original sinusoidal signal with period 50, the scalogram
and the reconstruction from the CWT are shown from left to right
panels.
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Figure 8. The original sinusoidal signal with a variable period from
20 to 100, the scalogram and the reconstruction from the CWT are
shown from left to right panels. Center panel shows how the scalogram
manages to capture the variable period.

5. Conclusions

In this paper we presented a brief summary of the theory of wavelet analysis,
multiresolution analysis, and the continuous wavelet transform along with some
applications in periodic time series to detect periods or points of change through
simulations and real data. The R software was used for the implementation of
numerical simulations and the wavelet analysis.



150 A.Christen

0 200 400 600 800 1000

-2
-1

0
1

2

Time

0.0

0.0

0.0

0.2

0.5

0.9

w
avelet pow

er levels

16

32

64

128

pe
rio
d

200 400 600 800 1000

Time

Figure 9. The original sinusoidal signal with two periods (30, 80)
along the curve is shown on the left panel. The corresponding scalo-
gram with the evidence of the two periods along all the range of the
signal is shown on the right panel.

6. R Codes

Some of the R codes used in this Chapter are presented in this section. Note
that the '+' sign is used in some commands to indicate that they continue on the
next line. When running them in R you must select all the lines corresponding
to the command, deleting the '+'. For example, for the command:

plot(t,haar3, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5),
+ col='blue')

put in R without '+' and select all the sentences in order to run it:

plot(t,haar3, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='blue')

6.1. STFT

Figure 1:

install.packages('e1071')
library(e1071)

t1<-seq(0,100,0.01)
length(t1)
x1<-sin((0.2*pi)*t1[1:3000])
x2<-1.5*sin(0.5*pi*t1[3001:4000])
x3<-2*sin((0.8*pi)*t1[4001:10001])
x<-c(x1,x2,x3)
z1<-sin((3/5)*t1[1:3000])
z2<-0.5*sin(0.5*t1[3001:6000])
z3<-2*sin((1/10)*t1[6001:10001])
obj<-c(z1,z2,z3)
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Figure 10. The original sinusoidal signal with two periods, P = 80
for the �rst part of the curve and P = 30 for the �nal part is shown on
the left panel. The corresponding scalogram with the evidence of the
two detected periods and the time interval involving each one is shown
on the right panel.

par(mfrow=c(2,2))
plot(x, type='l', main='Sine wave 1', xlab='Time', ylab='Signal')
y<-e1071::stft(x)
plot(y, xlab='', ylab='', main='STFT of Sine wave 1', ylim=c(0,15))
plot(obj, main='Sine wave 2', xlab='Time', ylab='Signal',type='lines')
z<-e1071::stft(obj)
plot(z, xlab='', ylab='', main='STFT of Sine wave 2', ylim=c(0,15))

Figure 2:

install.packages('lomb') #Lomb Scargle periodogram
library(lomb)
lsp(x, times=t1,ofac=5, xlim=c(0,0.5))

Figure 3:

install.packages('e1071')
library(e1071)

x<-rnorm(500)
y<-e1071::stft(x)
obj<-arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
+ sd = sqrt(0.1796))
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Figure 11. The scalogram of the same sinusoidal curve of Figure 7
with period 50 where 50% of data was removed. In presence of irregular
sampled data the scalogram underestimates the period.

z<-e1071::stft(obj)

plot(x, type='l', main='White noise', xlab='Time', ylab='Signal')
plot(y, xlab='', ylab='', main='STFT of white noise')
plot(obj, main='ARMA(2,2)', xlab='Time', ylab='Signal')
plot(z, xlab='', ylab='', main='STFT of ARMA(2,2)')

Figure 4:

install.packages('WaveletComp')
library(WaveletComp)

w = periodic.series(start.period = 20, end.period = 100, length = 1000)
w = w + 0.2*rnorm(1000)
wy<-e1071::stft(w)

par(mfrow=c(1,2))
plot(w, type='l', main='A signal with variable periods', xlab='Time', ylab='Signal')
plot(wy, xlab='', ylab='', main='STFT of the signal', ylim=c(0,20))

6.2. Haar Wavelet

Figure 5:

t<-seq(-2,3,0.01)
length(t)
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Figure 12. The original light curve of 55 Cyg is shown on the left
panel. After splitting the signal in two parts the two corresponding
scalograms are shown on the right panels.

par(mfrow=c(2,3))
title('Wavelet Haar')
#Plot 1: Wavelet Haar father: j=0 k=0. -----------------ORIGINAL
haar1<-c(rep(0,200), rep(1,100), rep(0,201))
plot(t,haar1, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='blue',
+ ylab='', xlab='(a)')
abline(v=0)
abline(h=0)

#Plot 2: Wavelet Haar father: j=0 k=1
haar2<-c(rep(0,300), rep(1,100), rep(0,101))
plot(t,haar2, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='blue',
+ ylab='', xlab='(b)')
abline(v=0)
abline(h=0)

#Plot 3: Wavelet Haar father: j=1 k=1/2
haar3<-c(rep(0,250), rep(2,25), rep(0,226))
plot(t,haar3, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='blue',
+ ylab='', xlab='(c)')
abline(v=0)
abline(h=0)

#Plot 4: Wavelet Haar mather: j=0 k=0. ---------------ORIGINAL
haar4<-c(rep(0,200), rep(1,50), rep(-1,50),rep(0,201))
plot(t,haar4, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='violet',
+ ylab='', xlab='(d)')
abline(v=0)
abline(h=0)

#Plot 5: Wavelet Haar mather: j=0 k=1
haar5<-c(rep(0,300), rep(1,50), rep(-1,50),rep(0,101))
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plot(t,haar5, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='violet',
+ ylab='', xlab='(e)')
abline(v=0)
abline(h=0)

#Plot 6: Wavelet Haar mather: j=1 k=1
haar6<-c(rep(0,300), rep(2,25), rep(-2,25),rep(0,151))
plot(t,haar6, type='l', ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col='violet',
+ ylab='', xlab='(f)')
abline(v=0)
abline(h=0)

6.3. CWT and Scalogram

This section is based on Roesch & Schmidbauer (2018).

Figure 7: A series with a constant period, period equal 50

install.packages('WaveletComp')
library(WaveletComp)

set.seed(1)
x1 = periodic.series(start.period = 50, length = 1000)
x1 = x1 + 0.2*rnorm(1000) # add some noise
plot(x1, type='l', xlab='Time')
date=1:1000

my.data <- data.frame(date=date, x = x1)
my.w <- analyze.wavelet(my.data, "x",
loess.span = 0,
dt = 1, dj = 1/250,
lowerPeriod = 16,
upperPeriod = 128,
make.pval = TRUE, n.sim = 10)
#scalogram
wt.image(my.w, color.key = "quantile", n.levels = 250,
legend.params = list(lab = "wavelet power levels", mar = 4.7))
#red zones with black lines corresponds to more significant periods

#recover the significant periods and the average period
ta<-my.w$Period[which(my.w$Ridge==1,arr.ind = TRUE)[,1]]
mean(ta)

#reconstruct the signal using wavelets
reconstruct(my.w, plot.waves = FALSE, lwd = c(1,2),
legend.coords = "bottomleft", ylim = c(-1.8, 1.8))
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Figure 8: A series with a variable period.

install.packages('WaveletComp')
library(WaveletComp)

x = periodic.series(start.period = 20, end.period = 100, length = 1000)
x = x + 0.2*rnorm(1000)
plot(x1, type='l', xlab='Time')

my.data <- data.frame(x = x)
my.w <- analyze.wavelet(my.data, "x",
loess.span = 0,
dt = 1, dj = 1/250,
lowerPeriod = 16,
upperPeriod = 128,
make.pval = TRUE, n.sim = 10)
wt.image(my.w, n.levels = 250,
legend.params = list(lab = "wavelet power levels"))
#The variable period is observed in the scalogram

#reconstruction
my.rec <- reconstruct(my.w)

Figure 9: A series with two periods.

install.packages('WaveletComp')
library(WaveletComp)

set.seed(1)
x1 <- periodic.series(start.period = 80, length = 1000)
x2 <- periodic.series(start.period = 30, length = 1000)
x <- x1 + x2 + 0.2*rnorm(1000)
plot(x, type='l', xlab='Time')

my.data <- data.frame(x = x)
my.w <- analyze.wavelet(my.data, "x",
loess.span = 0,
dt = 1, dj = 1/250,
lowerPeriod = 16,
upperPeriod = 128,
make.pval = TRUE, n.sim = 10)
wt.image(my.w, n.levels = 250,
legend.params = list(lab = "wavelet power levels") )

#reconstruction
reconstruct(my.w, plot.waves = TRUE, lwd = c(1,2),
legend.coords = "bottomleft")
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Figure 10: A series with two periods in di�erent times.

install.packages('WaveletComp')
library(WaveletComp)

set.seed(1)
x1 <- periodic.series(start.period = 80, length = 1000)
x2 <- periodic.series(start.period = 30, length = 1000)
x <- c(x1 , x2) + 0.2*rnorm(1000)
plot(x, type='l', xlab='Time')

my.data <- data.frame(x = x)
my.w <- analyze.wavelet(my.data, "x",
loess.span = 0,
dt = 1, dj = 1/250,
lowerPeriod = 16,
upperPeriod = 128,
make.pval = TRUE, n.sim = 10)
wt.image(my.w, n.levels = 250,
legend.params = list(lab = "wavelet power levels") )

Figure 11: An unevenly sampled data.

install.packages('WaveletComp')
library(WaveletComp)

set.seed(1)
x1 = periodic.series(start.period = 50, length = 1000)
x1 = x1 + 0.2*rnorm(1000) # add some noise
date=1:1000

#Deleting some data to produce gaps
obs <- sample(seq(x1), 0.5*length(x1)) # 50% gaps
x11 <- x1[sort(obs)]
date1 <- date[sort(obs)]

par(mfrow=c(1,2))
plot(x1 ~ date, pch=".", cex=2)
plot(x11 ~ date1, pch=".", cex=2)

par(mfrow=c(1,1))

my.data11 <- data.frame(date=date1, x = x11) #with unevenly data
my.w11 <- analyze.wavelet(my.data11, "x",
loess.span = 0,
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dt = 1, dj = 1/250,
lowerPeriod = 16,
upperPeriod = 128,
make.pval = TRUE, n.sim = 10)

wt.image(my.w11, color.key = "quantile", n.levels = 250,
legend.params = list(lab = "wavelet power levels", mar = 4.7))
#In presence of unevenly data wavecomp subestime the period.

reconstruct(my.w11, plot.waves = FALSE, lwd = c(1,2),
legend.coords = "bottomleft", ylim = c(-1.8, 1.8))
#Be carefull, Wavecomp analyze the serie sticking the gaps

7. Notation

Some notation used in the article is the following:

R is the set of real numbers,

Z is the set of integer numbers,

⊕ direct sum of two or more linear sub-spaces, that is, a new subspace spanned
for generators of each sub-space in the direct sum where each is orthogonal
to any other.

	 of a subspace included in another subspace, if B ⊂ A, then A 	 B is the
orthogonal complement of B within A,

||.||2 2-norm of functions, ||.||2 =
∫∞
−∞ |f(t)|2dt,

L2(R) Hilbert space of real functions with �nite 2-norm.
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Abstract. Stellar pulsations can cause variability in the brightness of
the star as well as in the shape and radial velocity of photospheric lines.
To determine the periods and modes of pulsations, two di�erent but com-
plementary observational techniques are in use: photometric light curves
to measure the brightness variations, and spectroscopic time series to an-
alyze the time-dependent motions at the stellar surface. In the �rst part
of this Chapter, both observing techniques and their sources of errors and
limitations are presented. In the second part, an overview of the various
space and ground-based missions for both photometry and spectroscopy
is given. Considering all the currently available and newly planned instru-
ments, the future for research in variable and pulsating stars is bright.

Key words: asteroseismology � stars: oscillations � stars: atmo-
spheres

1. Introduction

Pulsations modify the observable properties of stars. The motion of the surface
elements cause variations in both the velocity and the stellar �ux. Changes in �ux
are primarily due to temperature variations1 and can be traced by photometric
monitoring. The velocity variations are detectable in spectroscopic time series.

Most stars pulsate in more than one mode and observations provide only
the combined e�ect of all modes simultaneously. A simple example is shown in
Figure 1, in which two sine-curve modes with di�erent period, amplitude and
phase superimpose to the total observable signal shown in the right panel. The
combined signal can be either a photometric light curve or a radial velocity
curve. The aim of any data analysis is to deconvolve the observed signal into the
contributions of each individual mode thereby determining their properties, i.e.,
frequency, amplitude, and mode identi�cation. These are the fundamental sets
of data in asteroseismology.

To disentangle the various contributing modes, suitable frequency analysis
techniques are needed, which are described in other Chapters of this book. Here,
the focus is on another aspect: The quality of the data used for the analysis.
Because both photometry and spectroscopy require di�erent instrumentation and

1Unless the star undergoes large-amplitude radial pulsations. In this case, photometric obser-
vations are also sensitive to the changes in stellar radius.
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Figure 1. Example of two periods (left and middle panels) with di�er-
ent frequencies, amplitudes, and phases that superimpose (black path)
to the total, observable signal (right panel). To extract information
about pulsations, the observed signal needs to be deconvolved into the
individual contributions (blue path).

observing conditions, these two observing modes are described separately. But
before coming to the details, a few general terms need to be introduced and
discussed as well, which are relevant for both photometry and spectroscopy2.

Precision The most relevant parameter in asteroseismology is precision. As
we will see later (Section 4), asteroseismology and the search for and characteri-
zation of exoplanets post the same demands on instrumentation. Consequently,
space missions as well as high-duty-cycle ground-based projects dedicated to one
of them, also delivers data for the other scienti�c branch. And the need for
extremely high precision is the ultimate driver for instrumental development to
satisfy these requirements.

During the past ∼ 50 years the precision in astronomical photometry has
increased from ∼ 0.01mag to a few µmag. Equally, the precision in radial ve-
locity determination has increased from ∼ 1 km s−1 to 10s of cm s−1. In both,
an improvement by four orders of magnitude has been achieved. Each observer
should make every e�ort to minimize errors and to improve the precision be-
cause only the best data will deliver meaningful results. As a matter of fact, the
higher the precision in both photometry and spectroscopy the larger are the sets
of identi�ed frequencies.

Duty Cycle Besides precision, the duty-cycle of observations is of great im-
portance. Generally speaking, the duty-cycle is a measure for the fraction of the
observing time spent on the variability of the target. Ideally, one would wish for
a duty cycle of 100%, because every gap in the observations can lead to confusion
in frequency determination. Therefore, space missions are best suited for follow-
ing the variability of objects. But these have enormous costs. For ground-based
observations, the duty-cycle is usually much smaller, typically less than 50% for
single site observations for a short time span under good weather conditions.

Time The principal data of asteroseismology are time series, either in pho-
tometry (light curve) or in spectroscopy (radial velocity curve). Time series

2Parts of this Chapter are based on and follow the excellent textbook of Aerts et al. (2010).
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allow us to derive asteroseismic frequencies. For reliable results, the time of the
observations must be known to high precision.

In asteroseismology normally the Coordinated Universal Time (UTC) which
depends on the Earth's rotation is used as reference system3. But the UTC is
not a uniform timescale because the length of the day has an annual variation
of about a millisecond. Moreover, long term drifts appear as well due to the
tidal interaction between the Moon and the Earth. Therefore, a sort of �leap
seconds� are introduced to keep UTC in phase with the atomic time. For the
most precise studies, however, a constant, �ephemeris time� scale without leap
seconds is needed.

Depending on the desired precision, the e�ects of the Earth's motion about
the Sun, or about the solar system barycenter are removed and times are con-
verted to Julian Dates. The term �Julian Date (JD)� was introduced by Joseph
Justus Scaliger in 1583 at the time of the Gregorian Calendar reform, who set the
starting point to noon Universal Time (UT), 1 January 4713 BCE (before cur-
rent era). Because of this historically chosen zero point, JD is nowadays a huge
number, and astronomers often opt to use the �Modi�ed Julian Date (MJD)�,
which is de�ned as JD-2400000.5, which reduces the number and also eliminates
the half-day o�set. Another convention is the �Heliocentric Julian Date (HJD)�,
which provides the observation time corrected to the solar center by accounting
for the disturbances introduced by the orbit of Jupiter. For many purposes in
astronomy and asteroseismology based on single site data this is a su�ciently
precise timescale.

Better precision is achieved when the observation time is corrected to the
barycenter of the solar system (�Barycentric Julian Date (BJD)�), whereas the
ultimate precision is obtained when the leap seconds are subtracted. This is
called the �Barycentric Julian Ephemeris Date (BJED)�. BJD or BJED should
be used for long-term (years) data sets as well as for data collected from multiple
sites.

Every astronomer has to make sure that the time base(s) are correct, es-
pecially when merging data sets from di�erent sources and sites. An easy time
trap when being careless with the use of the time base can lead to the detection
of a planet in the signal which is, however, not related to any new discovery, but
just due to the Earth's orbit.

2. Photometry

The most widely used tool to study stellar variability is by measuring precisely
the changes in stellar intensity. This is done by means of photometry.

The quality of detectors has drastically changed over the past centuries.
Observations started with the human eye which can provide visual observations
with an accuracy of about 0.05�0.10 mag. Such kind of data are su�cient for
the study of large amplitude pulsators, e.g Mira variables.

3The reader interested in the complexity of the precise time is referred to the website of the
U.S. Naval Observatory: https://www.usno.navy.mil/USNO/time
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A considerable improvement in precision was achieved with photographic
plates. This technology started in the 19th century and dominated the measure-
ment of stellar brightness until the CCD era started in the 1990s and revolution-
ized astronomical observations. While photographic plates are still occasionally
in use, CCDs are nowadays ubiquitously established and will be the predominant
method of measuring stellar intensity and its variations in the 21st century.

While ground-based photometry has reached precisions of 10s of µmag, space
photometric missions are capable of µmag precision. Considering that the mean
magnitude of a star may be known only with an accuracy of a few millimag, the
variations in stellar brightness, and hence the amplitudes of the pulsations, can
be determined to precisions 1000 times better.

2.1. Sources of Error in Photometry

A number of e�ects exist that can cause errors to the photometric measurements.
Some are due to the limitations of the technical equipment, others are because
of restrictions set by the observing conditions.

Photon Statistics The process of photon detection has a normal distribution.
Consequently, if we denote withN the number of detected photons, the statistical
error is given by

√
N , and the signal-to-noise ratio goes as S/N = N/

√
N =

√
N .

In principle, the noise level can be reduced by improving the signal, i.e., by
increasing the integration time. However, very long integrations for a highly
reduced error due to photon statistics is not useful in case the signal that is
supposed to be detected has short periods. And many pulsating stars, such
as pulsating white dwarfs, roAP stars, solar-like oscillators, or sdB stars have
rather short variability timescales but are faint objects. For those targets, a
large telescope can help in increasing the signal, but it is still limited by photon
statistics.

Atmospheric Sources of Errors � Extinction Variations In the absence
of clouds, the extinction of the Earth's atmosphere is a further factor in�uencing
and disturbing photometric observations. It measures the amount of starlight
that is removed along the line of sight as a function of the airmass. By de�ni-
tion, Earth's atmosphere has an airmass (X) of unit 1 for observations towards
the zenith, and increases towards the horizon, because of the longer light path
through the atmosphere. If one approximates the atmosphere with a plane-
parallel slab model, the airmass for the observation of an object under the zenith
distance angle z would simply be X = sec(z). To account for the curvature of
the Earth's atmosphere, a polynomial approximation has been derived and is
generally in use (Hardie, 1964),

X = sec(z)−0.0018167(sec(z)−1)−0.002875(sec(z)−1)2−0.0008083(sec(z)−1)3.

This relation is precise for zenith angles up to z = 85◦, which is much closer to
the horizon than the angle under which observations are usually carried out. In
many cases it is even su�cient to use just the �rst two terms of this equation. The
reduction of the observable starlight due to the airmass is thus just a function of
the zenith angle.
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However, in reality the sky transparency is always variable in time and in
both zenith angle and azimuth. The reason is, that the atmospheric conditions
depend not only on the airmass, but also on other parameters, such as temper-
ature and humidity, and on the levels of dust and aerosols in the atmosphere.
The timescales of these variations in sky transparency are on the order of 15min
and longer. These transparency variations thus cause an atmospheric noise that
depends on frequency and that has higher amplitudes at lower frequencies. It is
referred to as �pink� noise. To account for this variable atmospheric extinction,
in particular in photometric observations of stars with pulsation periods (much)
longer than about 15 min, it is required to observe also non-variable standard
stars for comparison.

A cloudless night with no highly variable dust or aerosols in the atmosphere
is usually called �photometric�.

Atmospheric Sources of Errors � Scintillation With the term scintillation
one refers to the variable refraction in the atmosphere, which makes the stars
�twinkle� when observed with the naked eye. The Earth's atmosphere consists
of many gas cells. Each of them has a radius of 10s of cm, and the gas within
each cell has slightly di�erent values of pressure, temperature and humidity thus
causing a slight variation in refraction from cell to cell. The light path from the
top of the atmosphere down to the telescope hence passes through many cells,
and at each of them it changes slightly its direction. Moreover, the positions of
these cells are not �xed but depend on and travel with the wind conditions, so
that the total amount of light that reaches the detector is variable. In this way,
scintillation causes a �white� noise in the signal, i.e. a noise with no frequency
dependence. It is thus the dominant source of error in a photometric night for
periods shorter than the 15min limit set by the atmospheric extinction.

The noise caused by scintillation follows also (as photon statistics) a normal
distribution, because the light simultaneously passes through many independent
cells, and its level drops with the square root of the number of gas cells along
the light path. As the number of scintillation cells increases with increasing
telescope aperture, the amount of noise decreases. Big telescopes are therefore
better suited for observations of pulsating stars with scintillation as the limiting
noise source.

Instrumental Sources of Noise The technical equipment used for photo-
metric observations has also sources of errors. Some are periodic, others random.

Every CCD has pixel-to-pixel sensitivity variations. For the high-quality
CCDs that are nowadays in use these variations can still be on the order of 1%,
which is too high to be ignorable. Other sources of CCD noise are dark currents,
bias, and read-out noise. They can be accounted for by collecting additional
calibration images along with the science frames.

• Bias images. These have zero second exposures. They are taken to remove
any internal bias structure across the chip such as the amount of counts
accumulated during the reading out of the CCD.

• Flat-�eld images. Flats contain the information about the pixel-to-pixel
variation. They are obtained by illumination of the entire CCD with a
constant light source.
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Figure 2. Example set of photometric observations. The raw image
needs to be corrected for bias and �at frames to achieve a reduced image
suitable for reliable intensity measurements.

• Dark images. Darks are long exposure images taken with the shutter closed.
These are only necessary in case of a considerable dark current in the CCD.
Most modern CCDs have no signi�cant dark current so that dark images
are usually not required anymore.

Examples of the calibration images (bias and �at) and their impact on the science
frames are shown in Figure 2 for demonstration purpose. For a comprehensive
description of CCDs and data reduction the interested reader is referred to the
Handbook of CCD Astronomy by Howell (2006).

For the most precise photometry, it is essential to keep a stellar image �xed
at the sub-pixel scale to avoid that stars are moving over the CCD, but no tele-
scope can track to that precision. Therefore, autoguiding is needed. The use
of autoguiding also eliminates another instrumental e�ect which might cause an
arti�cial periodic signal. This is the periodic error in the right ascension drive in
the telescope which, in the absence of autoguiding, injects a signal into photo-
metric time series with the frequency of the telescope drive. Typical drive periods
are 2 or 4 siderial minutes. They can cause confusion with stellar periods for
stars pulsating in that frequency range such as roAP stars, solar-like oscillators,
sdBV stars, or pulsating white dwarfs. To identify and eliminate such periodic
instrumental signals it is necessary to have a standard star observed, ideally in
the same �eld of view as the target.
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2.2. Filters

Photometric observations provide information about the stellar brightness in a
certain wavelength range, de�ned by the used �lter. Many di�erent �lter systems
exist, and the interested reader might inspect the work of Bessell (2005) for an
overview of the various broad and narrow band systems as well as of the ob-
servational complications with standard photometry. The three most commonly
used systems are Johnson UBV RI, Strömgren uvby, and the Sloan Digital Sky
Survey (SDSS) u′g′r′i′z′ �lters (Fukugita et al., 1996).

Every �lter has its de�ned wavelength coverage, transmission curve, and
sensitivity curve. Therefore, the use of identical �lters is important when com-
bining data from di�erent facilities, or when organizing multi-site campaigns,
because the amplitudes and phases of stellar pulsations are wavelength depen-
dent. Changes in stellar brightness caused by oscillations are predominantly due
to temperature variations, which manifest themselves particularly in the blue
spectral range. Consequently, the monochromatic amplitudes of the pulsations
due to temperature variations are highest in the blue as well.

One might interpret photometry through �lters as sort of spectroscopy, just
at very low resolution. But we need high-resolution spectroscopy to extract
additional and viable complementary information about the pulsation properties
of stars.

3. Spectroscopy

Spectroscopic observations provide an important tool, not only for asteroseis-
mology, but for all �elds of astronomy and astrophysics. With respect to stellar
astronomy they are used for spectral classi�cation, for the derivation of stellar
parameters such as e�ective temperature and gravity, as well as for the deter-
mination of the atmospheric chemical abundances. Spectroscopic data are also
vital to derive the mass-loss rates of stars, and to characterize circumstellar en-
vironments. Moreover, whenever spectroscopic time series are at hand, they can
provide information on stellar multiplicity or the presence of a planet, or they
can be used to analyze and classify stellar variability either due to surface spots,
magnetic �elds, or pulsation activity.

High-resolution spectroscopic data, suitable for asteroseismology, can to
date only be acquired with ground-based facilities. Di�erent types of spectro-
graphs exist, ranging from linear single order to echelle systems, but they all
usually consist of a collimator, a prism or grating for dispersion, and a CCD
camera. While every instrument needs its own reduction procedure, for which
often an instrument pipeline exists, the basic steps are the same for most spec-
trographs.

As for photometry (Section 2), calibration images need to be taken along
with the target frames. These are again bias, �ats, and eventually dark frames.
However, in contrast to photometry, also calibration lamp spectra need to be
secured. An example of how the required observational sets look like in both
single order and echelle spectroscopy is shown in Figure 3 and 4, respectively,
and detailed descriptions of spectroscopic observations and data reduction can
be found in Massey & Hanson (2013).
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Figure 3. Example set of spectroscopic single-order observations.
These are: bias (top left), �at (top right), and comparison lamp spec-
trum (bottom left) which are needed along with the stellar spectrum
(bottom right) for correction and calibration.

Figure 4. Example set of spectroscopic observations taken with an
echelle spectrograph. Shown are the same set of observations as for
single-order spectroscopy: bias, �at, calibration lamp and stellar spec-
trum with the di�erent spectral orders projected parallel to each other
on the CCD. Note that in the shown calibration lamp spectrum several
intense lines are saturated causing bright artifacts.

In brief, the raw images need to be corrected for dark current (if available),
then the bias needs to be subtracted and the images have to be divided by
the master �at, which is created from a number of �ats taken throughout the
observing night (depending on stability of the spectrograph). Then the stellar
spectrum has to be extracted whereby the sky background is subtracted. For
echelle data, each spectral order needs to be identi�ed and extracted separately
thereby correcting for the so-called blaze function. Afterwards, the spectrum
needs to be wavelength calibrated by using the comparison lamp spectrum. Fi-
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nally, the wavelength calibrated spectrum needs to be shifted to the solar system
barycentric reference frame.

Any changes in pressure, temperature or humidity within the environment
in which the instrument is located lead to small shifts in wavelength. Modern
spectrographs are therefore placed in a room with stable conditions. Neverthe-
less, observations taken during a night can still display some wavelength drifts on
a timescale of hours. These drifts cause a low-frequency noise in the amplitude
spectrum of the radial velocity variations, in analogy to the low-frequency noise
in photometry due to extinction variations.

For exoplanet studies a precision in radial velocity measurements down the
level of m s−1 or better is required. In this case, it is advised to implement an
iodine cell into the light path. The iodine imprints its rich I2 molecular line
spectrum onto the stellar spectrum for very accurate wavelength calibration.
The downside of using an iodine cell is that it requires detailed modeling of the
molecular lines and their deconvolution from the stellar spectrum. Even worse,
it reduces the S/N of the spectrum, because the iodine reduces the incoming
starlight by about a factor of two. Therefore, this method of wavelength calibra-
tion is usually not used for asteroseismology.

Figure 5. Examples of �nal, normalized spectral pieces of the pulsat-
ing B supergiant (BSG) 55Cyg (top) and two slowly pulsating B (SPB)
stars (middle and bottom). The upper two stars are of early B-type, the
bottom star is a late-type B star. Data have been taken with the single
order spectrograph at the Perek 2-m telescope at Ond°ejov Observatory
providing a resolution of R ∼ 18 000 around 450 nm.

An example of �nal, normalized spectral pieces of three pulsating stars is
shown in Figure 5. The upper two stars are of early B-type, whereas the bottom
spectrum is from a late B-type star. Noticeably, the spectral appearance changes
with e�ective temperature and luminosity class of the star. Therefore, the choice
of suitable lines for the analysis depends on the spectral type of the star. But
also on the stellar rotation, which can lead to signi�cant broadening and, hence,
to blending of adjacent lines. When analyzing time series, one should make sure
to focus on deep, unblended lines, ideally of metals.

A further important parameter is the S/N value of the spectra. The higher
S/N , the more accurately the line pro�le parameters can be measured. However,
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to achieve a high S/N in high-resolution data for faint and short-period pulsators
is a further challenge and not always achievable, requiring compromises.

3.1. Line Pro�le Variations

The pro�le of a spectral line contains a variety of information about the physical
conditions within the line-forming region. While emission lines provide insight
into the parameters of stellar winds and circumstellar matter, stellar absorption
lines carry (besides temperature, gravity and stellar rotation) the information
about the dynamical conditions within the atmosphere, that is at the surface
of the star. Any change in the atmospheric kinematics, e.g., due to non-radial
pulsations, causes temporal variations in the shape and center of gravity of line
pro�les. Nice examples of computed line-pro�le variations of stars pulsating in
various non-radial modes can be seen, e.g., on John Telting's webpage4.

To identify pulsations in spectroscopic time series, the pro�le variability can
be visualized by various means as shown in Figure 6 for the example of β Cep.
Overplotting the normalized pro�les of a time series of an individual photospheric
line (second panel) often shows already whether the pro�les are constant and
symmetric or not. In the shown example, the pro�les vary in three ways: they
change their shape and their intensity, and they move in wavelength, so that
they seem to swing from one side to the other. When plotting the intensity
variation of the lines in a gray-scale plot as a function of time (third panel), a
sine-curve like variability pattern appears. Alternatively, one might compute the
mean of all observed lines (top panel) which can then be subtracted from each
individual line pro�le to obtain the residuals (fourth panel). These residuals can
also be represented in a gray-scale plot as a function of time (bottom panel) to
highlight the positive and negative deviations from the mean pro�le. The use of
such gray-scale images has been invented by Gies & Kullavanijaya (1988). These
plots guide the eye and in such way facilitate the identi�cation of any features
or patterns traveling across the pro�le.

However, not every periodically varying pro�le is automatically an indication
of stellar oscillations. Other e�ects can cause variability as well. For instance, a
companion (either star or planet) leads to periodic variability. But in this case,
only a change in radial velocity is seen. Companions do not alter the shape of
the absorption lines. A di�erent scenario leading to line pro�le variability is due
to spots caused by temperature or abundance patterns on the stellar surface.
These spots are usually not (or at least not on short timescales) changing their
sizes and distributions over the surface, so that the observable pro�le variability
is due to (and follows) stellar rotation, and hence just a single frequency (and its
(sub)harmonics) is detected. In contrast to these scenarios, stellar pulsations are
typically multi-periodic and create highly complex variations in both radial ve-
locity and pro�le shapes. Consequently, the analysis of spectroscopic time series
of variable stars provides an important diagnostics for distinguishing pulsating
stars from other objects with variabilities. Furthermore, it is an essential tool
for a proper characterization of the pulsation behavior of oscillating stars.

4http://sta�.not.iac.es/∼jht/science/
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Figure 6. Representations of line-pro�le variability for the example
of the Siiiiλ 4574 line in the pulsating star β Cep. From top to bottom:
mean line pro�le of 620 observations � a subset of 54 normalized spectra
� gray-scale image of intensity variations � 54 residual spectra (having
the mean spectrum subtracted) � gray-scale representation of residuals.
Figure is taken from Telting et al. (1997).

3.2. Speci�c Requirements for Spectroscopy

Before concluding this section on spectroscopy, the speci�c requirements for the
data sets should be emphasized. Most important for the detection of the rather
small deviations in shape and radial velocity from an unperturbed, symmetric
line pro�le is the high quality of the data with respect to both resolution and
S/N level.

The resolving power, R, at a given wavelength λ (for example, the laboratory
wavelength of the investigated spectral line) is de�ned as R = λ/∆λ. The
resolution should be at least 30 000. Certainly better are spectra withR > 50 000.
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The same principle holds also for the signal-to-noise ratio: the higher the better.
However, the higher the resolution and the fainter the object, the longer is the
integration time to achieve adequately high S/N values. Therefore, in reality
one has to �nd the best suitable combination for the object that is supposed to
be studied. As sort of a guideline, one should opt to sample the observed line
pro�le in wavelength with about 50 points and to achieve a S/N value greater
than 200.

But there are more constraints than just resolution and noise level. To
unveil the signature of oscillations, there should be at least ten measurements
distributed over each pulsation cycle. This can be achieved by observing over
many cycles for a long time base, which also guarantees that at least some of
the cycles are densely covered for a decent frequency spectrum, in particular
for stars with multi-periodic oscillations and complicated beating patterns. For
the data to be considered su�ciently time-resolved they are required to cover at
least two points per cycle for all harmonics needed to reproduce the shape of the
variability pattern which is usually the radial velocity curve.

Furthermore, the data also need to have a good temporal resolution. This
means, that the integration time should not exceed about 1�2% of the pulsation
period. Only in this case, the measurements can be considered as instantaneous.
Otherwise, the signal appears to be smeared out, an e�ect which then needs to
be simulated and corrected for.

Considering all these requirements, one should make sure to carefully adjust
the observational setup and strategy according to the speci�c needs for the target
under investigation and the research goal that one wishes to achieve.

Having introduced all the targeted demands for the observational data, we
now turn to the various missions dedicated to (or useful for) the acquisition of
data for di�erent types of variable stars.

4. Space Missions

4.1. Observations of Variable Stars - How It All Started

The HIgh Precision PARallax COllecting Satellite (HIPPARCOS5) of the Eu-
ropean Space Agency (ESA) was one of the most important and pioneering large
surveys of variable stars. During its 3.5 years of operation from 1989 to 1993, the
parallaxes of about 120 000 bright stars in the solar neighborhood were measured
with unprecedented precision of 2 mas, and their proper motions with an accu-
racy of 2 mas/year. This accuracy has been achieved from about 100 individual
observations per star that have been randomly distributed over the mission life-
time. The observations of HIPPARCOS have been performed with a broad-band
white-light �lter covering the wavelength range 400− 800 nm.

The satellite has been equipped with an auxiliary star mapper (the Tycho
experiment) that pinpointed many more stars. Its accuracy was lower, but still
good enough to determine the parallax and proper motion of a million fainter
stars with an accuracy of 30 mas (per year). The total number of measured
objects has been compiled in the Tycho 2 Catalogue, which has been completed

5https://www.cosmos.esa.int/web/hipparcos/home
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in 2000. It lists the total of 2 539 913 stars, and includes 99% of all stars down
to magnitude 11.

Besides the position and proper motion measurements, the major achieve-
ment of the HIPPARCOS mission was the discovery of a few thousand new
periodically variable stars that have been reported in the Catalogue of Periodic
Variables and another few thousand variables without a clear dominant periodic-
ity, listed in the Catalogue of Unsolved Variables. Numerous new variables have
been discovered with periods of the order of days. Such stars are di�cult to �nd
from ground. The results from the HIPPARCOS mission particularly impacted
the studies of slowly pulsating B (SPB) stars, for which HIPPARCOS increased
the number by a factor of ten (Waelkens et al., 1998), and it doubled the number
of γ Dor stars (Handler, 1999). Moreover, HIPPARCOS also discovered 343 new
eclipsing binaries and thus doubled their number (Söderhjelm, 2000).

The new catalogs of variable stars triggered extensive follow-up long-term
ground-based photometric and spectroscopic campaigns. The brightest stars of
each class were monitored to study their pulsational behavior and to derive the
general properties of the objects.

4.2. Follow-up Surveys of Variable Stars

It took ten years after the end of the HIPPARCOS mission before the next
satellite, dedicated to the observations of variable stars, was sent to space. An
overview of all relevant space missions and their (actual or planned) duration
periods is depicted in Figure 7.
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Figure 7. Space missions suitable for variable star research, even if
their prime objective was sometimes quite di�erent.

MOST The Canadians were the next to launch a satellite called Microvari-
ability & Oscillations of Stars (MOST6). It was Canada's �rst space telescope,

6http://most.astro.ubc.ca//index.html
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and the �rst spacecraft dedicated purely to the study of asteroseismology of a
variety of pulsating objects.

MOST consisted of a visible-light dual-CCD camera, fed by a 15-cm aperture
Maksutov telescope. One CCD observed the science target, while the other was
used for star-tracking with a pointing accuracy better than 1′′. With its broad-
band (300 nm) �lter centered at 525 nm, MOST performed ultra-high-precision
photometry measuring brightness variations down to the mmag level.

With its suitcase size (65 cm × 65 cm × 30 cm) and a weight of just 54 kg,
this microsatellite was given the nickname �Humble Space Telescope�. It was
launched in June 2003 and was intended to be a one-year mission to observe a
total of ten bright (V = 0.4−6.0mag) stars for a period up to 60 days. However,
MOST succeeded to survive for more than 15 years and was in operation until
March 2019. During this period it delivered precise data for more than 5000
objects.

CoRoT The next mission, initiated and led by the French Space Agency
(CNES) in conjunction with ESA and other international partners, was enti-
tled Convection, Rotation and planetary Transits (CoRoT7). It was designed to
investigate stellar pulsations and to search for exoplanets.

The telescope was equipped with a 27 cm diameter lens and a wide-�eld
camera observing in visible light and with a �eld of view of 7 square degrees. The
camera had 4 CCD detectors with 2000×2000 pixels. For its asteroseismic goals
the satellite operated in two modes: long runs of 150 days (central program)
devoted to a small number of (∼ 50) selected main-sequence targets brighter
than magnitude 9, and short runs of 20 days (exploratory program) inserted
in between two long runs dedicated to a variety of stars across the whole HR
diagram from spectral type B to K. For the exoplanet hunting, the targets were
red dwarfs (F to M) with magnitudes between 12 and 15.5.

The satellite was launched on 27 December 2006 and it terminated its op-
eration in June 2014. During this 7.5-year mission, CoRoT discovered several
hundred exoplanet candidates and collected light curves for about 160 000 vari-
able stars.

Kepler Space Telescope Another satellite, dedicated primarily to the search
for Earth-size planets, was NASA's Kepler Mission8. Kepler was a 0.95-m aper-
ture Schmidt telescope equipped with a photometer that operated at 430�890
nm and continually monitored the brightness of approximately 150 000 main se-
quence stars in a �xed �eld of view of 105 square degrees (∼ 12 degree diameter).
The focal plane consisted of an array of 42 CCDs pointing to one �eld, read-out
every 3 seconds for stars brighter than R ∼ 16mag and integrated over 30min.
For uninterrupted observations, the �eld of view had to be out of the ecliptic
plane, and to maximize the number of stars in the �eld, it pointed towards a
region in the constellations Cygnus and Lyra.

The satellite was launched in March 2009, and the mission's lifetime was
initially planned to 3.5 years. This lifetime has been extended, because the data

7https://corot.cnes.fr/en/COROT/index.htm

8https://www.nasa.gov/mission_pages/kepler/overview/index.html
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had higher than expected noise which required longer integration (hence longer
duration) for a successful completion of the planned mission. In 2012, one of
the spacecraft's four reaction wheels used for pointing the spacecraft stopped
turning, and in May 2013 the second wheel failed. This was the end of the main
mission.

A new concept for the satellite has been developed, which allowed a restart
of observations relying only on the remaining two reaction wheels. This so-called
�Second Light� of Kepler was dubbed the K2 mission and was in operation from
2014 until the spacecraft ran out of fuel in 2018. To cope with the satellite's
limitations, the new observing mode was a series of sequential �elds distributed
around the ecliptic plane with a length of 80 days each.

In total, Kepler observed 530 506 stars and discovered 2 662 exoplanets over
its lifetime. Despite its major goal of exoplanet research, Kepler observed many
more stars as a side product, and in fact, the number of publications based on
Kepler and K2 data in other �elds of astrophysics became even higher than the
one dealing with exoplanets, showing that other scienti�c branches can greatly
bene�t from missions that are not directly related to their �elds.

STEREO How stellar astrophysics can bene�t from missions other than their
own is impressively demonstrated by another NASA mission called Solar TEr-
restrial RElations Observatory (STEREO9). This mission consists of two nearly
identical satellites orbiting the sun at 1AU distance equipped with white light
coronagraphs. The prime goal of that mission was to provide the �rst-ever stereo-
scopic measurements to study the sun and space weather, and to construct a 3D
structure of the sun and of coronal mass ejections. Nevertheless, the satellites
imaged also stars in the vicinity of the sun. These are monitored each year for
a period of about 20 days and the images can be used to extract light-curves of
the objects.

The mission was launched in October 2006. While the STEREO B satellite
died in 2014, STEREO A still continues to deliver data which can also be used
for asteroseismic studies of variable stars.

BRITE A mission dedicated solely to the monitoring of objects with V -band
magnitudes brighter than 6 is provided by the constellation of nanosatellites,
each of them being a BRIght Target Explorer (BRITE10). The �rst two have been
provided by Austria (BRITE-AUSTRIA and UniBRITE) and were launched on
February 25, 2013. These have been followed by two Polish BRITEs, BRITE-Lem
launched on November 21, 2013, and BRITE-Heweliusz, launched on August 19,
2014. Finally the Canadians launched two more BRITES (BRITE-Toronto and
BRITE-Montreal) together on June 19, 2014. Unfortunately, BRITE-Montreal
is not operating, so that the �nal constellation consists of just 5 nanosatellites.

To achieve their goal of investigating the stellar structure and evolution of
the brightest stars in the sky, the camera exposure times range from 1 to 5
seconds, collected about 3-4 times per minute and for 15-35 minutes per orbit.
The observing run for each �eld is limited to about 180 days. The satellites are

9https://www.nasa.gov/mission_pages/stereo/main/index.html

10https://brite-constellation.at/
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equipped with an instrument sensitive either in a red bandpass (550 � 700 nm;
UniBRITE, BRITE-Toronto, and BRITE-Heweliusz) or in a blue one (390 � 460
nm; BRITE-Austria and BRITE-Lem). The �eld of view of both the red and
the blue version of the camera is about 24 degrees in diameter allowing for the
observation of about 15 bright targets per �eld at the time.

Gaia ESA's next big mission was Gaia11. As a follow-up of the HIPPARCOS
mission, Gaia has the ultimate goal to measure the positions, distances and space
motions of about one billion stars. On board are two identical telescopes that
point in di�erent directions with a separation angle of 106.5 degrees. Three
instruments collect the light coming from the two telescopes and merged into a
common path. The astrometric instrument measures the stellar positions on the
sky. By the end of the mission, the global astrometry will be measured for all
one billion stars down to G ∼ 20mag down to micro-arcsecond precision. The
two photometers, one operating in the blue (330 � 680 nm) and one in the red
(640 � 1050 nm), collect low-resolution spectra and provide color information of
the stars that will allow to derive stellar parameters such as temperature, mass
and chemical composition. The radial velocity spectrometer measures the stars'
radial velocity at medium resolution (R ∼ 11 500) based on absorption lines in
the red part (845 � 872 nm) of the spectrum.

Gaia is observing since July 2014. It is expected that throughout the mis-
sion, many thousands of extra-solar planets will be discovered (from both their
astrometric wobble and from photometric transits) and that their detailed orbits
and masses will be determined. During its 5-year mission, a sky-averaged num-
ber of 70 photometric measurements is expected from the astrometric �eld and
from the blue and red photometers. Moreover, variability on short (seconds) to
long (of order 5 years) time scales can be detected.

TESS A further mission, primarily devoted to the discovery of transiting exo-
planets, is NASA's Transiting Exoplanet Survey Satellite (TESS12). The satellite
is equipped with four identical, highly optimized, red-sensitive (600 � 1000 nm
bandpass) wide-�eld cameras, each with a 24 deg by 24 deg �eld of view so that
together they can monitor a 24 deg by 90 deg strip of the sky. Each strip is
observed for a total of 27 days so that almost the full sky is mapped within a
period of 2 years. The �rst year of its operation TESS scanned the southern
sky, and in the second year the northern one. The CCDs read out continuously
at 2-second intervals, and the data are stacked to the length of the chosen ca-
dence. During the 2-year run, a selected number of 200 000 brightest stars were
observed with 2-minute cadence and provided with postage stamp sizes (usually
10× 10 pixels), whereas full-frame images had a cadence of 30 minutes. All data
become public four months after observations, providing an unprecedented pool
of high-quality light curves for all types of variable stars.

TESS is in operation since 2018 July 25 and �nished its 2-year prime moni-
toring mission on 2020 July 5. Right after, the TESS extended mission started,
which will last for another 27 months, beginning again with the southern sky

11https://www.cosmos.esa.int/web/gaia/home

12https://tess.mit.edu/
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and focusing on those targets that fell into gaps between sectors during the �rst
monitoring period. During the extended mission, about 20 000 objects will be
monitored per sector at 2-minute cadence as during the prime mission. However,
a sample of up to 1000 targets per sector will be read out with a 20 s cadence,
whereas the full-frame image cadence has been reduced from 30 to 10 min to
broaden the range of scienti�c investigations.

PLATO Finally, it is worth mentioning that ESA is currently preparing a
new mission called PLAnetary Transits and Oscillations of stars (PLATO13).
The launch of this satellite is scheduled for 2026 with an intended 4 years of
operation.

The prime goal of that mission is again to �nd and study a large number
of extrasolar planetary systems. The emphasis is hereby on determining the
properties of terrestrial planets in the habitable zone around solar-like stars and
to investigate seismic activity for a precise characterization of the planet host
stars. To achieve these goals, PLATO will perform high precision, long (months
to years), uninterrupted photometric monitoring in the visible band of a very
large sample of stars brighter than V ∼ 11mag.

In addition, many other objects will be observed, which fall outside PLATO's
core science but are of high value for other branches in Astronomy dealing with
stellar variability. These other aspects of astrophysics (e.g., binary and multiple
stars, pulsating stars, magnetic stars, transient phenomena, stars with mass loss,
etc. just to mention a few) are lumped together into what is called the PLATO
Complementary Science (PLATO-CS14). The PLATO-CS will rely on the cali-
brated light curves provided by the PLATO mission. These light curves will be
assembled in a variability catalog and will be o�ered to the scienti�c community
for exploitation.

5. Ground-Based Photometric Surveys and Databases

For accessing photometric light curves and data from long-term monitoring one
has not solely to rely on space missions, but can use products from their ground-
based counterparts. Several large surveys have been carried out, not always with
the prime goal to study stellar pulsations and not always performed by profes-
sional astronomers, but providing high-quality data that can be used for aster-
oseismological purposes. This section gives an overview of the diverse ground-
based surveys and databases.

5.1. Missions Dedicated to Variable Stars

AAVSO The American Association of Variable Star Observers (AAVSO) is
the world largest association of variable star observers. It was founded in 1911 to
coordinate the variable star observations of mostly amateurs astronomers, and
to foster collaboration between amateurs and professionals in the �eld of variable
star research.

13https://sci.esa.int/web/plato

14https://fys.kuleuven.be/ster/research-projects/plato-cs
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AAVSO's International Database15 contains over 34 million variable star
observations going back over one hundred years. It is the largest and most com-
prehensive digital variable star database in the world. To date, over 1 000 000
new variable star brightness measurements are added to the database every year
by observers from all over the world. The database contains a diversity of pho-
tometric measurements in di�erent bands, and the AAVSO webpage provides a
light curve generator allowing the user to see and download the available data
for a given object.

ASAS The All Sky Automated Survey (ASAS16) is a low-cost automated sur-
vey with the prime goal to detect any kind of photometric variability. ASAS
consists of two observing stations, one at the Las Campanas Observatory in
Chile (since 1997) and another one at Haleakala, Maui (since 2006). Both tele-
scopes are equipped with two wide-�eld instruments that enable them to simul-
taneously observe in the V and I bands. The telescopes constantly monitor the
whole available sky, meaning that they provide photometric data for about 107

stars which have magnitudes brighter than 14. The observations are converted
to standard V and I magnitudes. They are collected in a variety of catalogs and
can be accessed from the ASAS webpage.

5.2. Surveys Related to MACHOs

As for the space telescopes, there were also several ground-based missions not
speci�cally targeted at variable stars, but providing data of variable stars as
side-products. One of them was the search of MAssive Compact Halo Objects
(MACHOs). These objects, which were considered to be mainly brown dwarfs
and planets, have been proposed to constitute a signi�cant fraction of the dark
matter in the halo of the Milky Way. If they were detected, they could help ex-
plain parts of the missing dark matter in the Universe. To search for MACHOs,
several large surveys were initiated in the early nineties. The idea was to dis-
cover these dark compact massive objects via microlensing events, in which the
MACHOs would serve as gravitational lens passing in between us and a back-
ground light source, such as the stars of the Magellanic Clouds or of the Galactic
Bulge. As such lensing events are extremely rare, long-time monitoring of a huge
number of light sources with high precision photometry is required. Such moni-
toring naturally provides data for millions of stars as side-products and led to the
discovery of many thousands of variable stars in the Magellanic Clouds and in
the Galactic Bulge (e.g., Sarro et al., 2009). Based on these surveys, signi�cant
progress on the properties of large-amplitude oscillators, such as Cepheids, RR
Lyrae stars, and red-giant and supergiant pulsators could be achieved. Here we
list only the most important surveys related to the search for MACHOs.

MACHO The MACHO Project17 started in 1992. It has been carried out
by a two channel system that employs eight CCDs, mounted on the 50 inch

15https://www.aavso.org/aavso-international-database-aid

16http://www.astrouw.edu.pl/asas/?page=main

17http://wwwmacho.anu.edu.au/
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telescope at Mt. Stromlo for simultaneous imaging in two passbands, in the red
(630 - 760 nm) and blue (450 - 630 nm) bands.

EROS In 1990 started the Expérience pour la Recherche d'Objets Sombres
(EROS18) survey which consisted of two phases, EROS-I and EROS-II. This
survey has been carried out based on a 40 cm telescope with a CCD camera, op-
erated at the La Silla Observatory in Chile, and 1 meter Schmidt ESO telescope,
with photographic plates, alternately with a blue and a red �lter. In 1995, a 1.5-
m telescope recuperated from French observatories replaced the 40 cm telescope.
This was the start of the EROS-II era which ended in 2003. EROS monitored
in total 90 million stars located in the Galactic Center and in the Magellanic
Clouds.

OGLE The Optical Gravitational Lensing Experiment (OGLE19) started in
1992 with the �rst phase (OGLE-I) during which the 1-m Swope telescope at
the Las Campanas Observatory in Chile has been utilized. The telescope was
replaced in 1996 by the 1.3-m Warsaw Telescope, with which the second phase
(OGLE-II) started in 1997. In 2001 OGLE-III started when a new CCD mosaic
camera was installed covering a 35′ × 35′ �eld of view. Finally a 32 chip mosaic
camera with a total �eld of view of 1.4 square degrees has been installed in 2010,
initiating the so far last phase, OGLE-IV, which is still ongoing. While during
the phases OGLE-II and OGLE-III standard UBV RI �lters have been available,
these have been replaced by standard V I interferometric �lters.

5.3. Survey Related to Transiting Exoplanets

KELT The Kilodegree Extremely Little Telescope (KELT20) mission was a
survey aimed at searching for transiting exoplanets around bright stars. The
mission consisted of two fully robotic telescopes, one on each hemisphere. KELT-
North is located at Winer Observatory in Arizona and went into operation in
2005. KELT-South followed in 2009. It is located at the Sutherland observing
station of the South African Astronomical Observatory. Each telescope has a
�eld of view of 26× 26 degrees and observed multiple �elds with between 50 000
and 200 000 stars per �eld. Their main focus was on stars with apparent visual
magnitudes of V = 8− 11mag.

The KELT light curve data archive is publicly available via the NASA Ex-
oplanet Archive (NEA21). It contains about 1.1 million light curves. The KELT
transit search was concluded in March 2020. During its observing run, 26 planets
have been discovered.

5.4. Future Ground-based Photometric Mission

To my knowledge, there is so far one large mission in preparation:

18http://eros.in2p3.fr/

19http://ogle.astrouw.edu.pl/

20https://keltsurvey.org/

21https://exoplanetarchive.ipac.caltech.edu/
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LSST The Large Synoptic Survey Telescope (LSST22, renamed into Rubin
Observatory) is currently under construction on Cerro Pachón in Chile. It has
a three mirror system and the world largest CCD. The 3.2 gigapixels camera
will operate from the UV to the near-infrared in the spectral bands labeled u,
g, r, i, z, & y. With its almost 10 square degrees �eld of view (corresponding
to 40 times the size of the full moon), the LSST will survey the night sky for
a period of 10 years. Each night, more than 800 panoramic wide-�eld images
with 30 second exposures will be taken with this 8.4-m telescope, resulting in
a recording of the entire visible sky twice per week, and a total of about 1000
visits for each object during the planned duration of the survey. The total data
volume generated each night will be on the order of 20 Terabytes. Image data
products will be made available daily, and data products resulting from coherent
processing will be made available via yearly releases.

The scienti�c goal of this survey is to detect changes in brightness and
position of objects as big as far-distant galaxy clusters and as small as near-by
asteroids. The start of full science operations and the beginning of the survey is
foreseen for the end of 2022.

5.5. Ground-based Spectroscopic Monitoring Facilities

The situation with observing missions dedicated to spectroscopic monitoring is
much worse than the photometric possibilities. While many, especially national
spectroscopic facilities exist and are used by individual research teams, there is
to my knowledge only one coordinated network.

SONG This very promising project was launched in 2006 by the Stellar Ob-
servations Network Group (SONG23). Its ultimate goal is to construct a global
network of six to eight small robotic telescopes distributed over the world to
collect uninterrupted time series from ground for solar-type stars, and to search
for and characterize planets.

Currently, only one 1-m telescope, located at the Teide Observatory in
Tenerife, is in operation. It is equipped with a high-resolution echelle spec-
trograph with a resolution from 35 000 to 112 000 and a wavelength coverage of
440 � 690 nm. A second 0.7-m telescope is in its testing phase and will be located
at the Delingha Observatory in China, and a further node is under development
for Southern Queensland, Australia.

6. Conclusions

In this Chapter, the observational techniques for obtaining high-quality data in
both photometry and spectroscopy and their adequacy, limitations, and bene�ts
for investigating pulsating stars have been presented. To study all aspects of
stellar pulsations concurrently, it would be most ideal to simultaneously monitor
stars photometrically (preferentially from space to have continuous light curves)
and spectroscopically (which is currently possible only from ground) utilizing

22https://www.lsst.org/lsst/

23https://phys.au.dk/song/
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multiple, identical facilities distributed all over the world to minimize the losses
due to day-time and bad weather, ideally with high cadence, excellent temporal
resolution, high signal-to-noise and high spectral resolution. Obviously, this is
wishful thinking and in reality the situation looks di�erent from that.

For space photometry, many objects are very bright, meaning that the signal
is polluted by read-out noise, or stars are saturated on the chip, if they are
observed at all. Therefore, preference is often given to less bright objects.

For spectroscopy, many of the photometrically easily followed objects are
too faint to monitor them with high cadence in high spectral resolution and high
S/N . For this task, large 6-10m-telescopes would be required, but monitoring
campaigns at the big observatories have no or only little chance for getting time
at their telescopes because of their low output but high costs. Therefore, such
monitoring is usually performed with smaller, 1-2m class telescopes. The advan-
tage of these telescopes is that there is much lower pressure, but for the price of
being limited to bright(er) or long-period objects, for which the needed coverage
and data quality can be achieved.

These limitations mean that for each target a compromise needs to be made
and for the observational setup a strategy has to be selected such that the speci�c
science goal will be achieved. Nevertheless, despite these hindrances the �eld of
asteroseismology has been steadily growing in the past decades. And considering
all the currently available and newly planned instruments and missions for pho-
tometry and spectroscopy, I am con�dent that the future for research in variable
and pulsating stars is bright.

Acknowledgments. I wish to thank the SOC and LOC for their fantastic
job in organizing and implementing this interesting and pleasant Summer School.
Most of the data and images shown have been collected with the Perek 2-m tele-
scope at Ond°ejov Observatory. The Astronomical Institute, Czech Academy of
Sciences, is supported by the project RVO:67985815. This project has received
funding from the Czech Science Foundation (GA�R 20-00150S) and from the
European Union's Framework Programme for Research and Innovation Hori-
zon 2020 (2014-2020) under the Marie Skªodowska-Curie Grant Agreement No.
823734.

References

Aerts C., Christensen-Dalsgaard J., Kurtz D. W., 2010, Asteroseismology
Bessell M. S., 2005, ARA&A, 43(1), 293
Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P.,

1996, AJ , 111, 1748
Gies D. R., Kullavanijaya A., 1988, ApJ , 326, 813
Handler G., 1999, MNRAS , 309(2), L19
Hardie R. H., 1964, Photoelectric Reductions, p. 178
Howell S. B., 2006, Handbook of CCD Astronomy, Vol. 5
Massey P., Hanson M. M., 2013, Astronomical Spectroscopy, p. 35
Sarro L. M., Debosscher J., López M., Aerts C., 2009, A&A, 494(2), 739
Söderhjelm S., 2000, Astronomische Nachrichten, 321(3), 165
Telting J. H., Aerts C., Mathias P., 1997, A&A, 322, 493
Waelkens C., Aerts C., Kestens E., Grenon M., Eyer L., 1998, A&A, 330, 215



Diverse Pulsating Stars





Pulsations Along Stellar Evolution
VIII LAPIS Summer School
AAA Workshop Series 12, 2021
M. Kraus & A.F. Torres, eds.

Pulsating Hot Subdwarf Stars

Alejandra D. Romero1

1Physics Institute, Universidade Federal do Rio Grande do Sul, Av.
Bento Gonçalves 9500, Porto Alegre, RS-91501-970, Brazil

Abstract. Hot subdwarf stars are core helium�burning objects, located
at the hot end of the horizontal branch, and therefore, they are also known
as Extreme Horizontal Branch stars. We can divide them into two large
groups, of spectral types B and O, depending on their e�ective temper-
ature. Each spectroscopic class has subgroups showing luminosity vari-
ations due to pulsations, opening the possibility to study these compact
objects through Asteroseismology. In this notes I will brie�y review the
main characteristics of hot subdwarfs B and O stars and the di�erent
pulsating subgroups.
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1. Introduction

Hot subdwarfs stars are evolved compact stars with temperatures between ∼
20 000 − 70 000 K and surface gravities ranging from 5.6 to ∼ 6.1. They are
evolved low mass stars, M∗ < 0.5M�, that consist in helium burning cores and
a thin hydrogen atmosphere which is unable to support hydrogen shell�burning
(Heber et al., 1984; Heber, 1986). They are found in the Galactic �eld population,
classi�ed as type O and B (sdO, sdB), depending on the temperature, and in
globular clusters as Extreme Horizontal Branch (EHB) stars.

The progenitors of hot subdwarfs are main sequence stars with initial masses
< 2.0 M�, that have undergone a core helium �ash and made their way to the
Horizontal Branch (HB), with a thin hydrogen envelope (Menv ∼< 0.01M�). As
a result of this low hydrogen mass, after core helium exhaustion, the stars move
directly to the white dwarf stage.

Around half of hot subdwarf stars are found in binary systems with short
periods, from hours to days, with mostly white dwarf companions (Maxted et al.,
2001; Napiwotzki et al., 2004; Copperwheat et al., 2011). Since the sdB stars
have evolved from red giants, much larger than current orbital separation of a
few radii, the progenitor system must have undergone a common envelope (CE)
phase.

Subdwarf B and O occupy neighboring regions in the HR diagram. However,
they are quite di�erent, both with respect to their chemical compositions and
evolutionary status (Heber, 2016). The atmospheres of sdBs are mostly helium
poor, their helium abundances might be as low as 1/1000 solar or less. sdO stars,
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on the odder hand, show a variety of helium abundances, ranging from 1/100
solar to pure helium atmospheres (He-sdO).

A subgroup of both sdB and sdO stars show luminosity variability due to
pulsations. In the case of sdBV there are three classes including the p−mode
pulsators EC 14026 stars, the g−mode pulsators PG 1716 and the hybrid sdBV,
showing both p− and g−modes. The hotter counterpart, the variable sdO stars
show short p−mode pulsations. The main characteristics of the classes of pul-
sating hot subdwarf stars will be addressed in this work.

2. Evolution Towards the Horizontal Branch

The stars in the lower main sequence start their evolution with initial high densi-
ties (103 g/cm3 for ∼ 1M�) and low temperatures, as compared to more massive
stars. Thus, at the end of the central hydrogen�burning stage the remaining he-
lium core is close to degeneracy. With the increase in the helium core mass due
to the hydrogen burning shell, it soon reaches electron degeneracy conditions,
and a new source of pressure is now balancing the gravitational collapse. This
structure, of a degenerate core and a non�degenerate envelope is in hydrostatic
equilibrium. The hydrogen burning�shell is active and its energy is used to ex-
pand the envelope in a giant con�guration, thus the star enters the Red Giant
Branch (RGB). The e�ective temperature decreases until it reaches the Hayashi
line1 and then the star starts to increase its luminosity.

The contraction of the core releases gravitational energy that heats up the
region where the hydrogen burning�shell is located, also increasing its produc-
tivity (εCNO ∼ T 20). Thus the envelope expands even further, increasing the
luminosity.

As the hydrogen�burning shell moves towards the surface of the star, it
produces helium increasing the mass of the core. Since the temperature of the
core is proportional to its mass (T ∼Mc/Rc), it also increases. Thus, when the
mass of the core is ∼ 0.45M�, independently of the total mass of the star, the
core reaches a temperature of ∼ 108 K, necessary to start the nuclear reaction of
helium. However, since the pressure of the core is dominated by the degenerate
electrons, an increase in the temperature due to the release of nuclear reactions
does not lead to an expansion of the core. Thus, the expansion work is zero
and all the released energy is transformed into internal energy, increasing the
temperature even more, leading to an unstable release of energy. The large
amount of energy is released fast as compared to evolution timescales, in an
event called the helium��ash (He��ash). The energy produced in the core by
the He��ash can reach luminosity of 1010L� comparable to the luminosity of our
Galaxy. Finally, the temperature will increase until T > TFermi and the pressure
depends on the temperature again. The core expands and cools, and the stable
nuclear burning stage begins, i.e. the Horizontal Branch.

1The Hayashi line marks the lowest e�ective temperature than can be reached by a stable
con�guration. The line itself corresponds to a fully convective star.
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3. The Formation of Extreme Horizontal Branch Stars

Hot subdwarf stars are located at the hot end of the Horizontal Branch, charac-
terized by a hydrogen envelope too thin to support nuclear shell�burning. The
main issue to understand the formation of EHB stars is the large amount of mass
that needs to be lost prior to or at the beginning of core helium burning. Two
main formation channels have been proposed, being close binary evolution or
the hot �asher scenario. Binary evolution through mass transfer and common
envelope ejection must be important for sdB stars due to the high percentage
of close binaries with periods of less than ten days. In addition, merger of two
helium white dwarfs is another vital option to explain the origin of single hot
subdwarfs. Enhanced mass loss during the RGB can decrease the hydrogen con-
tent of the envelope, delaying the core helium �ash (the so-called hot �asher
scenario), during which surface hydrogen is burnt after mixing into deeper layers
(Heber, 2016). More detail on the possible formation channels are given below.

3.1. Hot Flasher Scenario

Stars corresponding to the low main sequence, where hydrogen burning is mainly
due to the p− p cycle, begin the central helium burning stage with the He��ash
at the tip of the RGB. However, if su�cient mass loss occurs during the RGB,
the star will experience the He��ash at higher e�ective temperatures (Castellani
& Castellani, 1993). The remnants of these "hot �ashers" (Brown et al., 2001)
are found to be close to the helium main sequence. The outcome of a hot �asher
depends on the evolutionary phase during which it occurs (Cassisi et al., 2003),
as shown in Figure 1. Panel (a) shows the evolution where the mass loss was
slightly enhanced. In this case, the He��ash occurs near the tip of the RGB
and the star settles near the blue horizontal branch. If the He��ash occurs
early after departure from the RGB (Early hot �asher) at high luminosities
and e�ective temperatures, the further evolution results in a standard H/He
envelope hot subdwarf star (see panel b in Figure 1). The Late hot �asher
scenario occurs when the He��ash happens after the star enters the white dwarf
cooling sequence. If the He��ash occurs at high Teff , there is shallow mixing,
resulting in a hot subdwarf star with an atmosphere enriched in helium and
nitrogen due to convective dilution of the envelope (see panel c in Figure 1). If
the He��ash occurs at a lower luminosity in the white dwarf cooling sequence
(see panel d in Figure 1), the hydrogen�rich envelope is mixed and burned in
the convective zone generated by the �ash itself leading to strong enrichment of
helium, carbon and nitrogen in the atmosphere (Heber, 2009, 2016; Battich et al.,
2018). Thus, when in the evolution the He��ash occurs, it not only determines
the e�ective temperature of the star on the EHB but also its envelope chemical
composition.

3.2. Close Binary Evolution

The large fraction of sdB stars in close binaries suggests that they are formed
by binary interaction. There are three main formation channels: Roche�lobe
over�ow (RLOF) evolution, common envelope (CE) evolution (Paczynski, 1976),
and the merger of two he�core white dwarfs (Webbink, 1984; Han et al., 2002,
2003).
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Figure 1. Evolution of a solar metallicity star from the main sequence
to the zero�age horizontal branch for di�erent mass loss rates on the
RGB. The peak of the He��ash is indicated with a blue asterisk. (a)
The He��ash occurs soon after the tip of the RGB. (b) Early hot �asher:
the He��ash occurs at high luminosities and e�ective temperatures. (c)
Late hot �asher: The He��ash occurs soon after entering the white
dwarf cooling curve, causing a shallow mixing episode. (d) Late hot
�asher: The He�core occurs during the white dwarf cooling sequence
causing a deep mixing episode. Credit: The evolutionary sequences
from panels b, c and d were provided by Tiara Battich (private com-
munication), Battich et al. (2018).
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Figure 2. Contribution of the di�erent close binary formation chan-
nels to the population of hot subdwarf stars. Credit: Adapted by Ingrid
Pelisoli from Han et al. (2003).

In the RLOF formation channel, the mass transfer is dynamically stable
and the companion star accretes all the matter. The red giant loses almost all
its hydrogen�rich envelope during this stage and becomes a sdB star in a long
period binary with a main sequence component. The orbital periods are in the
range of 700�1300 days (Chen et al., 2013).

In the CE formation channel, the sdB progenitor �lls its Roche lobe near
the tip of the RGB. If the mass transfer rate is too high, the companion will not
be able to accrete all the material, forming a common envelope. Due to friction
with the gas the system will lose orbital energy and the orbit will shrink. The
orbital energy is transferred to the common envelope until it is enough to eject it.
The remaining core of the red giant will become the sdB star. Because the CE
phase is short as compared to the evolutionary timescale of the single stars, the
companion will remain almost unchanged. If the companion is a main sequence
star the resulting close binary is a sdB+MS with a period between 0.1 and 10
days (Heber, 2016). Even with the current advances in modeling, the physics
behind common envelope and accretion is not well understood. Recent works as
Davis et al. (2010) and Toonen & Nelemans (2013) are aimed at explaining the
formation of white dwarf binaries, while Clausen et al. (2012) is focused on sdB
binaries (Heber, 2016).

The most popular formation channel for single hot subdwarfs is the merger
of two helium core white dwarf stars (Webbink, 1984). The merger scenario can
be slow, fast or a combination of both (Zhang & Je�ery, 2012). In the slow
merger scenario the largest star, i.e. the less massive white dwarf, �lls its Roche
lobe and all the mass is transferred to the companion. The material will form
a disk in a few minutes and it will remain cold. The accretion is slow and can
last for a few million year, with the angular momentum being dissipated towards
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the disk circumference. On the other hand, in the fast merger scenario, no disk
is formed and the material falls directly onto the surface of the more massive,
smaller companion. A combination of both scenarios is also possible, where one
part of the disrupted donor star forms a corona (30%-50% of its mass), and the
rest forms a cold disk (Zhang & Je�ery, 2012; Lorén-Aguilar et al., 2009).

Each channel contributes to the population of hot subdwarfs in di�erent
amounts and mass range. Han et al. (2003) carried out a detailed binary popu-
lation synthesis study considering CE and RLOF formation channels. In partic-
ular, they predicted that the distribution of masses for sdB stars is wider than is
commonly assumed, with stellar masses ranging from 0.3 to ∼ 0.8M�, as shown
in Figure 2. The canonical mass range, indicated in the �gure, corresponds to the
contribution from the hot �asher scenario. This result is in very good agreement
with the distribution of the current population of hot subdwarf stars shown by
Schneider (2019)2, where the mass range can be as low as 0.2M� and larger than
0.7M� in a few cases. There is a large contribution of objects near ∼ 0.4M�,
that also have contributions from the hot �asher scenario, and a tail at lower
masses that can only be formed through binary interaction.

4. Chemical Structure and the Characteristic Frequencies

Hot subdwarf stars are part of the Extreme Horizontal Branch stage, where
helium in the core is being transformed into carbon and oxygen due to nuclear
reactions. At �rst, nuclear energy is being produced through the 3α process,
where three nuclei of helium, or α particles, are combined to form a carbon
nucleus. Once the abundance of carbon in the convective core is high enough,
∼ 50%, the reaction 12C(α, γ)O16 starts to be dominant, since it is more likely
to combine two particles than three. Thus, the carbon abundance reaches a
maximum and then decreases, along with the helium abundance. As a result,
the star leaves the horizontal branch with a carbon/oxygen core, usually with
C/O < 1.

The chemical pro�le of a hot sdB model with stellar mass 0.474M�, and
Teff = 26 214 K is shown in Figure 3. In this �gure only the more abundant
elements are depicted. As expected, the central regions are a mixture of carbon,
oxygen and helium. Carbon is still dominant but eventually its abundance will
decrease and oxygen will become the dominant element. The helium rich region
on top of the core is the remnant from hydrogen burning during the main se-
quence, since the He�burning core is always smaller than the H-burning regions.
Finally, no di�usion was considered in the computations, thus the envelope is a
mixture of helium and hydrogen.

Each chemical transition in the inner structure, will lead to a distinctive
signature in the characteristic frequencies for pulsation. In Figure 4 we show
the propagation diagram for an sdB model with stellar mass 0.473M�, Teff =
28 700K and log g = 5.53. The full line corresponds to the run of the Brunt-
Väisaälä frequency (N2), while the dashed curve is the run of the Lamb frequency
(L`) for ` = 2. The gray shaded region corresponds to the evanescence region.

2https://zenodo.org/record/3428841#.XcWlWJLYpE4

https://zenodo.org/record/3428841#.XcWlWJLYpE4
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Figure 5. Light curve (left) and Fourier Transform (right) EC 14026-
2647 for the original data from Kilkenny et al. (1997). The ordinate in
the light curve are separated by 0.05 mag and the abscissae by 0.01 d, so
that the data read continuously from left to right and top to bottom,
from fractional Julian date 0.307 to 0.387. For the FT the ordinate
carets are separated by 0.015 mag. Credit: Kilkenny et al. (1997).

Propagation is possible if the frequency of the mode is higher or lower than N2

and L`. Modes in the region of high frequency correspond to pressure modes
while gravity modes are found in the low frequency regions (Unno et al., 1979).
As can be seen from Figure 4, pressure modes propagate in regions closer to the
surface while gravity modes will show larger amplitudes in the inner regions of
the star. This e�ect is better depicted by the horizontal lines showing the square
values of the eigenfrequencies and the circles marking the position of the nodes
in the radial eigenfunction (y1). Thus, p�modes will bring information on the
outer layers while g�modes will bring information on the central regions.

5. Pulsating Subdwarf B Stars

The �rst pulsating sdB was discovered by Kilkenny et al. (1997) with the South
African Observatory, EC 14026-2647, showing short period variability with a
main period around ∼ 144 s. Therefore, this class of variable sdB is known as
EC 14026. The light curve and Fourier Transform are presented in Figure 5.
Independently and almost at the same time, Charpinet et al. (1996) predicted
the existence of pulsation instability for pressure modes in sdB stars, due to
the classical κ-mechanism associated to the Z−peak in the opacity. Figure 6
shows the run of the Rosseland opacity compared to the time derivative of the
work function dW/dr for the fundamental mode with ` = 2 (Charpinet et al.,
1996). The peak in dW/dr is directly related to the peak in the opacity due
to heavy elements marked as "Z-bump". Charpinet et al. (1996) �rst found
that instability was only present for high metallicity models with Z > 0.04, but
in a later work (Charpinet et al., 1997) they found that the enhancement in
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Figure 6. Run of the Rosseland opacity (dashed line) and the inte-
grand of the work integral for the fundamental mode with ` = 2 (solid
line). Driving regions (dW/dr > 0) are clearly associated with the
opacity bump, caused by heavy element ionization (Z-bump). The HeII-
HeIII convection zone is indicated with vertical dotted lines. Credit:
Charpinet et al. (1996), c© AAS. Reproduced with permission.

the Fe�peak elements in the driving region was enough to drive pulsations. The
local overabundance of heavy elements is possible due to the equilibrium between
radiative levitation and gravitational settling processes.

EC 14026, also called V361 Hya stars, pulsate in pressure modes with short
periods between 80 s and 580 s, with amplitudes of 0.3 − 64 mmag. They are
found mainly among the hotter sdBs, with e�ective temperatures between 28 000
and 35 000 K, and log g ∼ 5.8. The position of the current sample of EC 14026
stars in the log g−Teff plane is depicted in Figure 7 (blue circles) in the low log g
part of the diagram, along with all classes of pulsating hot subdwarfs, that will
be discussed below. The data was extracted from Table 1 of Holdsworth et al.
(2017). The sdB instability strip is not pure, and around 10% of the objects in the
temperature range where EC 14026 stars are found, show pulsations (Østensen
et al., 2010).

The second class of variable sdB stars was discovered by Green et al. (2003).
These stars are known as V1093 Her, or PG 1716 after the prototype PG
1716+426. PG 1716 stars are long period pulsators with periods between 1400
and 43 500 s, and amplitudes of 0.4 − 4.1 mmag. As can be seen from Figure
7 (red triangle�up), they are cooler than the p-mode pulsators EC 14026, with
e�ective temperatures between 23 000 and 30 000 K, and log g ∼ 5.4. Fontaine
et al. (2003) showed that g-mode pulsations are excited in PG 1716 stars by the
same κ-mechanism proposed by Charpinet et al. (1996, 1997), if the observed
g-modes are high radial order and high harmonic degree (` ≥ 3) modes. Around
%75 of the objects inside the PG 1716 instability strip show brightness variations.

Three years later, Schuh et al. (2006) reported the �rst pulsating sdB, HS
0702+6043, that showed both short and long periods, and thus it was called a
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triangle). The values of log g and e�ective temperatures where taken
from Table 1 of Holdsworth et al. (2017).
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Figure 8. Fourier transform for the discovery of the hybrid sdB star
HS 0702+6043. The plot shows the Fourier Transform of the full light
curve, with the window function for the two�night data set displayed
in the inset panel in the upper right corner (frequency in µHz as in
the main plot, the amplitude scaling is arbitrary). Credit: Schuh et al.
(2006). Copyright A&A. Reproduced with permission c© ESO.

hybrid sdBV star. HS 0702+6043 was previously identi�ed as a EC 14026 star
with two short periods of 363 s and 383 s, but further observations revealed a
low�amplitude (∼ 4 mmag), long�period of 3538 s, identi�ed by Schuh et al.
(2006) as a g-mode pulsation. The Fourier Transform from Schuh et al. (2006) is
shown in Figure 8. Hybrid sdBV stars show e�ective temperatures ∼ 28 000 K,
between long and short period sdBVs, as it is shown in Figure 7, where hybrid
sdBVs are depicted with green squares. Since p−modes propagate in the outer
regions of the star, whereas g−modes do in the deep interior, the whole internal
structure of the star can be sampled in the case of hybrid sdB stars (Heber,
2016).

The only pulsating He�sdBV is also depicted in Figure 7 (orange diamond).
He�sdB stars are a very small group of subdwarf stars that show varying degrees
of helium enrichment in the envelope, but have e�ective temperatures similar to
hydrogen rich sdB stars (Ahmad & Je�ery, 2003). Variability of the He-sdBV,
LV IV�14◦ 116, was reported by Ahmad & Je�ery (2003), with the detection of
two long periods of 1953 s and 2870 s, characteristic of g�mode pulsations.

The period range for each class of pulsating sdB stars is shown in Figure
9, where the period range for all sdB stars from Figure 7 are depicted in the
Period�log g plane. EC 14026 p−mode pulsators show periods in the range of
60�600 s, while PG 1716 g−mode pulsators show long periods in the range of
1400�44000 s. Hybrids are in between, with periods in the range of 118�28500 s.

6. Pulsating Subdwarf O Stars

Subdwarf O stars are intrinsically hotter than sdB stars. In addition, they show a
range of helium abundance in the atmosphere, from a hundredth of solar content
to pure helium. As an example, Figure 10 shows the normalized spectra of the
sdO J16007+0748 (Woudt et al., 2006). The He II lines are clearly present in
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absorption, along with the Balmer series lines from Hβ to Hε. Given the small
binary fraction of sdO stars, merger of two helium white dwarfs or hot �asher
evolution are the most likely formation channels.

J16007+0748 is the �rst and only pulsating sdO in the Galactic �eld. Woudt
et al. (2006) reported the detection of short period variability with a main period
of 119.33 s, being identi�ed with p�mode pulsations. The position of the sdOV is
depicted in Figure 7 with a magenta star, being the hottest object of the sample.

Latter, Randall et al. (2010, 2011) reported the detection of four sdOV stars
in the globular cluster ω Cen. The objects showed periods in the range between
84 s and 119 s, in agreement with the sdOV found by Woudt et al. (2006).
Currently, there are �ve sdOV stars from ω Cen, depicted with black down�
triangles in Figure 7. Contrary to the sdOV star found in the �eld, the objects
belonging to the globular cluster, show hydrogen dominated atmospheres, and
are also cooler. This could be related to the lower metallicity of the cluster as
compared to the disk population. The excitation mechanism seems to be κ−
mechanism, similar to sdBV stars (Randall et al., 2016).

7. Concluding Remarks

In this work I brie�y described the main characteristics of the pulsating hot
subdwarf stars. I recommend the excellent reviews of Heber (2009) and Heber
(2016) and references therein, for more details.
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Figure 10. Combined SALT spectrogram of J16007+0748 (only sdOV
star) obtained with a total exposure time of 1800 s. The absorption lines
are marked and labelled. Credit: Woudt et al. (2006).

There are currently, ∼ 100 sdB variables and six sdO variables reported
(Holdsworth et al., 2017), including those found with Kepler satellite observa-
tions. New space and ground-based surveys are expected to increase this sample.
In particular the TESS (Transit Exoplanet Survey Satellite) is a great tool to �nd
bright variables, as hot subdwarf stars, with around 40 con�rmed objects.

It is important to notice that, in order to study hot subdwarf stars using
asteroseismology, physically sound representative models should be available, in
order to compare the observed periods with theoretical pulsation spectrum. In
particular, by studying the inner structure of hot subdwarf stars we could shed
some light on the formation channels of these compact blue objects.

Acknowledgments. We would like to thank Larissa Antunes Amaral, Maja
Vu�ckovi¢ and Murat Uzundag for their help in preparing the presentation.
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Abstract.

White dwarf stars are the endpoint of the evolution of more than
95% of all stars in the Milky Way. They are compact objects, where the
gravity is balanced by the pressure of a degenerate electron gas. Along
the cooling curve, there are several instability strips where white dwarfs
show photometric variability due to pulsations, opening the possibility to
study these compact objects through asteroseismology. In this notes I
will brie�y review the main characteristics of white dwarf stars and the
di�erent pulsating subgroups.
Key words: asteroseismology � instabilities � stars: oscillations �
stars: interiors � planet-star interactions

1. Introduction

White dwarf stars are the endpoint in the evolution of all stars with initial
masses below 8 − 12M� (Siess, 2010; Woosley & Heger, 2015; Doherty et al.,
2015; Lau�er et al., 2018). This comprises more than 95% of all stars in the
Milky Way. Thus, they can be considered as fossils and they convey important
information on the structure, evolution and chemical enrichment of our Galaxy
and its components. They are compact objects with radius similar to the radius
of the Earth and surface gravities of log g ∼ 8. They can also be found in a
wide range in luminosity L/L� ∼ 10−4.7 − 103, and e�ective temperatures from
∼ 200 000 K to 4000 K. White dwarf stars are degenerate objects, where the
inner pressure is dominated by a degenerate electron gas (it does not depend on
temperature), while the thermal structure is dominated by the non�degenerate
ions. In the Hertzprung-Russell (HR) diagram white dwarfs are found below the
main sequence, being mostly of types O, B and A.

Pulsating white dwarf stars can also be found along the cooling curve. They
show g−mode non�radial pulsations with periods from minutes to a few hours
and variation amplitudes of millimag. White dwarf asteroseismology fully ex-
ploits the comparison between the observed pulsation periods in white dwarfs
and the periods computed for appropriate theoretical models. It allows us to in-
fer details of the origin, internal structure and evolution of white dwarfs (Fontaine
& Brassard, 2008; Winget & Kepler, 2008; Althaus et al., 2010). In particular,
constraints on the stellar mass, the thickness of the helium and hydrogen layers,
the core chemical composition, weak magnetic �elds and slow rotation rates can
be inferred from the period patterns of pulsating white dwarfs.

196
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There are currently several families of pulsating white dwarfs and related
objects, that can be found in speci�c ranges of e�ective temperature along the
cooling curve. At high e�ective temperatures we found the GW Vir stars, fol-
lowed by He�rich atmosphere V777 Her, C-rich atmosphere DQV and the cool
H�rich atmosphere ZZ Cetis. For low stellar masses, below ∼ 0.3M�, we �nd the
Extremely Low Mass (ELM) white dwarfs and their progenitors the pre-ELMs.
The main characteristics of the classes of pulsating white dwarf stars will be
addressed in this work.

2. Spectroscopic Classi�cation of White Dwarfs

From a spectroscopic point of view, the population of white dwarfs can be divided
into two groups: DAs, with hydrogen�rich atmospheres, and non�DAs, with
hydrogen�de�cient atmospheres. DA white dwarfs can be identi�ed from the
Balmer line series in their spectrum, as shown in the top panel of Figure 1.
This group is the most abundant and corresponds to ∼ 85% of all known white
dwarfs (Kepler et al., 2016, 2019). The non�DA white dwarfs can be classi�ed
by the dominant element in their spectra and e�ective temperature: a DO class
with strong lines of He II and e�ective temperatures of ∼ 45 000− 200 000 K; a
DB class with strong He I lines and Teff ∼ 11 000 − 30 000 K; and for e�ective
temperatures below Teff ∼ 11 000 K, DC, DQ and DZ classes with a continuum
spectrum, traces of carbon and metals in their spectra, respectively. Among the
non�DA white dwarfs, DB stars are the most abundant. The spectrum for DB
stars is characterized by He I lines, as shown in the bottom panel of Figure 1.

White dwarf stars show a mass distribution that is a combination of the
initial mass function and the timescale of evolution �that depends on the mass.
Both DA and DB distributions show a peak at ∼ 0.55M� (Ourique et al., 2019).
However, DA white dwarfs show a wider mass range, extending to low mass,
below 0.45M� and high mass, higher than ∼ 0.7M�. At the low mass end,
a contribution from close binary evolution is necessary, while for high stellar
masses, mergers should be the main formation channel (Cheng et al., 2019).

3. The Formation of White Dwarf Stars

White dwarfs are the endpoint of all stars with initial masses below 8 − 12M�
that evolved as single stars. Isolated stars or stars in non�interacting binary
systems, will evolve as single stars. Binary evolution can also produce white
dwarf stars. In particular, low mass white dwarf stars are produced from close
binary interaction while white dwarf stars with stellar masses > 0.8M� are
thought to be produced mainly by merger episodes.

Hydrogen atmosphere white dwarfs (DA) with stellar masses around ∼
0.55M� are expected to have evolved from single stars. Figure 2 shows the evo-
lution from the main sequences to the white dwarf cooling curve for stars with
initial masses between 0.92 M� and 3 M�. The evolution starts in the main se-
quence, where hydrogen is burnt in helium via the p−p�chain or CNO�cycle (see
for instance Kippenhahn et al., 2012, for details). Once the hydrogen in the core
is exhausted, they move to the �rst giant stage: the Red Giant Branch (RGB).
The hydrogen burning is now in a shell around the helium core, and its energy
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Figure 1. Spectra for two white dwarf stars from the Sloan Digital
Sky Survey (SDSS). Top: DA white dwarf with Teff ∼ 14 660 K. Bot-
tom: DB white dwarf with Teff ∼ 19 420 K.

is used to expand the outer layers. The inner helium core contracts releasing
gravitational energy which in turn increases its temperature. Once the helium
burning temperature is reached, a second central nuclear burning stage begins.
If the hydrogen envelope is massive enough, the star has two energy sources, the
central helium burning and the hydrogen burning�shell. After the exhaustion
of helium, the star goes through a second giant stage: the Asymptotic Giant
Branch (AGB). The AGB ends after the Thermal Pulses strip most of its enve-
lope (TP-AGB in Figure 2) and the star evolves to higher e�ective temperatures
at a nearly constant luminosity. Finally, after reaching the maximum Teff the
star enters the white dwarf cooling sequence.

White dwarf stars with hydrogen�de�cient atmospheres are believed to be
formed from a Very Late Thermal Pulse scenario, where the last thermal pulse
occurs at high e�ective temperatures, burning all remaining hydrogen (Althaus
et al., 2005, 2009). Close binary evolution or mergers are less likely to form
hydrogen�de�cient white dwarfs since most donor stars will have hydrogen�rich
envelopes.

For white dwarfs with stellar masses below ∼ 0.45M�, depending on initial
metallicity, the helium core will not reach the temperature for nuclear reactions
and the star will become a helium�core white dwarf. In addition, for stellar
masses < 0.3M� binary evolution is the only possible formation channel, since
a single star will take more than the age of the Universe to reach the white
dwarf stage (Pelisoli & Vos, 2019). The HR diagram of the evolution of ELM
progenitor of 0.28M� is shown in Figure 3. The progenitor star, transfers most
of its mass due to a Roche lobe over�ow (RLO) during its giant stage, leaving
the RGB before the ignition of nuclear reactions in the helium core. The loops
in the HR diagram are caused by residual hydrogen shell�burning, that reduces
the hydrogen content in the envelope (see Istrate et al., 2014a, 2016, for details).
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Figure 2. HR diagram for evolutionary sequences for Z = 0.004 and
initial masses in the range 0.92 − 3.0M� and white dwarf masses in
the range 0.503 − 0.817M� (Romero et al., 2015). The dashed line
represents the location of the beginning of the main sequence.
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Figure 3. HR diagram showing the evolution of a 0.28M� white
dwarf, with helium core. The progenitor star, with initial mass 1.4M�
and Z = 0.02, is in a binary system with a neutron star of 1.2 M�
and initial orbital period of 50 days. Credit: Courtesy of Alina Istrate
(private communication).
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Figure 4. The internal chemical pro�les of DA white dwarf model
withM∗ = 0.593M� and Teff ∼ 11 500 K. Only the main nuclear species
are depicted. The core is composed by a mixture of carbon and oxygen.

4. Chemical Structure and Characteristic Frequencies

Depending on the stellar mass, we can also classify the white dwarf stars by
their central composition. Most progenitors will go through the hydrogen and
helium central burning stages, resulting in a C/O core white dwarf. The chemical
pro�le for a 0.593M� DA white dwarf is shown in Figure 4, where we show the
abundances by mass as a function of the outer mass. We consider only the most
abundant elements, in this case, hydrogen, helium, carbon and oxygen. The
central regions (left side) correspond to the C/O core, formed mainly during
the central helium burning stages. On top of the core, there is a helium bu�er,
with ∼ 10−2M∗. Finally, a hydrogen rich atmosphere is formed due to di�usion.
Due to the characteristic high log g of white dwarf stars, chemical di�usion and
gravitational settling will play a main role in determining the chemical structure
of the star. Di�usion processes are responsible for the chemical strati�cation,
where lighter elements are lifted to the envelope and heavier elements sink down.

For stellar masses below 0.30 − 0.45M� the progenitor star does not expe-
rience central helium burning and it is left with a helium core, surrounded by a
thick hydrogen envelope (MH > 10−3M∗), as shown in Figure 5, for a 0.198M�
star. As mentioned in section 3, white dwarf stars with stellar masses below
0.3M� can only be formed by close binary evolution. These objects can be clas-
si�ed as low�mass or extremely low�mass white dwarfs, the limit between both
is not well de�ned in the literature. In this work I will consider white dwarfs
with masses below 0.3M� as ELMs to be consistent with the pulsating subclass.

For stellar masses higher than ∼ 1M�, carbon can still be ignited in de-
generate conditions, giving rise to a O/Ne/Mg white dwarf star. An example
of the chemical pro�le for a white dwarf of 1.22M� is shown in Figure 6. The
shaded region indicates the part of the core that is crystallized. The relative
amount of each element in the central regions depends on the total mass and
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Figure 5. Same as Figure 4 but for a model withM∗ = 0.198M� and
Teff ∼ 8985 K. The core is composed only by helium.

whether carbon burning reaches the center of the star, among other things (see
for example Denissenkov et al., 2013; Lau�er et al., 2018).

In case of the non�DA white dwarfs, hydrogen is depleted in the outer
regions of the star, leaving a He/C/O envelope for high e�ective temperatures,
and a helium�rich envelope, for lower e�ective temperatures. This can be seen
from Figure 7, where we show a chemical pro�le for a non�DA white dwarf star
of 0.515M� at three di�erent temperatures during the cooling sequence. The
top panel corresponds to a model at Teff = 81 752 K, that can be considered
a DO white dwarf star. The central composition is similar to that of a DA
white dwarf of the same mass, but the outer layers are composed by a mixture
of helium, carbon and oxygen (Althaus et al., 2009). As the star cools down,
di�usion processes begin to model the chemical pro�le (see middle and bottom
panel from Figure 7). The oxygen and carbon sink down, leaving a helium�
rich envelope, characteristic of DB stars. In addition, a "double-layer" structure
forms in the helium rich region (Althaus et al., 2009).

White dwarf stars show luminosity variations due to gravity modes. Since,
these are compact objects, pressure modes will have periods shorter than ∼ 10
s. Due to the core degeneracy, the Brunt Väisälä frequency decreases at the
center, "trapping" the pressure modes in the most inner regions. In addition,
the propagation region for gravity modes extends to the surface of the model.
Thus the propagation regions for p− and g−modes are inverted in comparison
with other types of pulsators. This can be seen from Figure 8, where the Brunt
Väisälä (N2) and Lamb (L`) frequencies for ` = 1 and 2 are depicted. The
propagation regions for p− and g−modes are also indicated.

5. Pulsating White Dwarfs

In this section, I will present the main characteristics of the most populous
classes, being GW Vir, V777 Her, ZZ Cetis, pre-ELMV and ELMV. For a com-
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Figure 7. Internal abundance distribution of the main chemical ele-
ments as a function of the outer mass fraction (log(1 −Mr/M∗)) for
a hydrogen�de�cient 0.515M� sequence at three stages on its cooling
branch, as speci�ed by the luminosity and e�ective temperature values
(log(L/L�)), log Teff) in each panel. The upper panel represents the
chemical pro�le for a DO white dwarf star, while the middle and lower
panels are characteristic of DB white dwarfs. Credit: Althaus et al.
(2009), c© AAS. Reproduced with permission.
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plete overview on pulsating white dwarfs I recommend the reader the reviews
from Winget & Kepler (2008); Fontaine & Brassard (2008); Córsico et al. (2019).

The excitation mechanism acting on pulsating white dwarf stars is the
κ−mechanism related to the opacity bump due to partial ionization of a given
element, being carbon and oxygen (K II�shell electrons) for GW Vir (DO) stars,
helium for V777 Her (DB) stars and pre-ELMVs, hydrogen for ZZ Ceti (DA)
stars and ELMVs and iron peak elements for BLAPs. Since each element be-
gins to be ionized at di�erent e�ective temperatures, this will lead to instability
strips at di�erent positions in the Teff − log g plane. Figure 9 shows the loca-
tion of all known classes of pulsating white dwarfs as associated objects. Each
class is depicted with a di�erent color, while the symbol indicates which element
is responsible for the excitation due to the κ−mechanism. Also included, are
theoretical evolutionary tracks for di�erent stellar masses in the cooling curve.

5.1. ZZ Ceti Stars

The �rst pulsating white dwarf star was reported by Arlo Landolt in 1946, and
it was the DA white dwarf HL Tau 76, showing a dominant period at 12.5 min
(Landolt, 1968). Since then, 253 objects are part of the DA white dwarf variable
class, known as ZZ Cetis (black circles in Figure 9).

The excitation mechanism enabling pulsations in ZZ Ceti stars corresponds
to the κ−mechanism due to the opacity bump caused by partial ionization of
hydrogen at the base of the hydrogen�rich envelope. At e�ective temperatures
characteristic of ZZ Ceti stars, di�usion already shaped their chemical structure,
leaving a hydrogen pure envelope. Because of this, it is believed that the insta-
bility strip for ZZ Cetis is pure, meaning that all DA white dwarfs in it should
present photometric variability due to pulsations.
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Figure 10. Distribution of ZZ Ceti stars on the Teff − log g plane.
Coloured symbols correspond to the ZZ Ceti stars known to date,
extracted from Bognar & Sodor (2016) (blue triangle-up), Su et al.
(2017) (green triangle-left), Hermes et al. (2017a) (red triangle-down),
Bell et al. (2017) (violet triangle-right), Rowan et al. (2019) (magenta
square) and Romero et al. (2019a) (black circle). We include evolution-
ary tracks (dashed lines) with stellar masses of 0.5, 0.6, 0.7, 0.8 and
0.9M� from top to bottom (Romero et al., 2019b). For visualization
purposes we include the observed blue and red edges (no uncertainties
are considered).

ZZ Ceti stars are the most populous class of pulsating white dwarfs (Romero
et al., 2019a), with periods in the range 70− 2000 s and variation amplitudes of
0.01�0.3 mag. The instability strip for ZZ Cetis extends ∼ 2500 K in e�ective
temperature, from ∼ 13 000 K to ∼ 10 400 K, depending on stellar mass (Kepler
& Romero, 2017; Hermes et al., 2017a). All ZZ Cetis known to date are depicted
in Figure 10 in the Teff − log g plane. As can be seen from this, the instability
strip is intrinsically hotter for higher stellar masses.

The ZZ Cetis can be classi�ed into three groups, depending on the e�ective
temperature (Clemens, 1993; Mukadam et al., 2006). The hot ZZ Cetis, which
de�ne the blue edge of the instability strip, exhibit a few modes with short periods
(< 350 s) and small amplitudes (1.5�20 mma). The pulse shape is sinusoidal or
sawtooth-shaped and is stable for decades. On the opposite side of the instability
strip, there are the cool DAV stars, showing several long periods (up to 2000 s),
with large amplitudes (40�110 mma), and non-sinusoidal light curves that change
dramatically from season to season due to mode interference. Mukadam et al.
(2006) suggested introducing a third class, the intermediate ZZ Cetis, with mixed
characteristics from hot and cool ZZ Cetis.

Asteroseismological studies including large samples of ZZ Ceti stars, ∼ 40−
100 objects, found that the thickness of the hydrogen envelope is not the same
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Figure 11. Light curve (top panel) and Fourier Transform (low panel)
for the outburst ZZ Ceti star PG 1149+057. The 10 outburst events
are marked in green while the data in quiescence is marked as black
points. Pulsations persist during outbursts but have higher amplitudes
and shorter periods than in quiescence. Credit: Hermes et al. (2015).
c© AAS. Reproduced with permission.

for all stars, but it shows a distribution in mass, from ∼ 10−4M∗ to 10−10M∗
(Castanheira & Kepler, 2008, 2009; Romero et al., 2013, 2019a). Thin hydrogen
envelopes, withMH < 10−8, have been con�rmed from mass�radius observations
of white dwarfs in binaries (Romero et al., 2019b), and it is also consistent with
spectral evolution due to mixing processes in the outer layers (Cunningham et al.,
2020; Ourique et al., 2020).

At the red edge of the ZZ Ceti instability strip, some objects show outburst
events (Bell et al., 2015). These stars show a rich period spectrum combined with
bursts repeating every few days, with peaks of up to 45% above the quiescent
level and involving very energetic events (∼ 1033−1034 erg). Figure 11 shows the
light curve and Fourier Transform for the second outbursting ZZ Ceti, reported
by Hermes et al. (2015). The outburst episodes are coupled with the g−mode
pulsations, due to highly non�linear e�ects (Luan & Goldreich, 2018).

5.2. GW Vir Stars

GW Vir stars are hot pulsating white dwarfs with hydrogen�de�cient atmo-
spheres composed by a mixture of helium (∼ 30 − 80%), carbon (∼ 15 − 60%)
and oxygen (∼ 2 − 20%) (Werner & Herwig, 2006), as shown in the top panel
of Figure 7. Luminosity variations are due to g−mode pulsations with low har-
monic degree (` ≤ 2) and high radial order k ≥ 18), showing periods in the range
of 300�6000 s and variation amplitudes of 0.01�0.15 mag.

The prototype of the class PG 119�035 was discovered to be variable by
McGraw et al. (1979), and it is the pulsating star with more detected periods after
the Sun, with 198 periods (Costa et al., 2008; Hermes et al., 2017b). Currently,
there are 20 GW Vir stars, depicted as blue triangle�left symbols in Figure 9.
The instability strip of GW Vir stars extends from ∼ 180 000 K to ∼ 75 400
K in e�ective temperature and from 5.5 to 7.7 in surface gravity (Fontaine &
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Brassard, 2008; Córsico et al., 2019). GW Vir stars are sometimes divided into
two subclases. The objects with log g = 5.5 − 7.0 are still surrounded by the
Planetary Nebula, that formed from the mass loss episodes during the thermal
pulses, and are called Planetary Nebula Nuclei Variable (PNNV). The objects
with surface gravity log g = 7.0− 7.3 have already lost the planetary nebula and
are also known as DOV stars.

The excitation mechanism is the κ�mechanism caused by the cyclic ion-
ization of the K�shell electrons of carbon and oxygen, as originally proposed
by Starr�eld et al. (1983). Latter computations using modern opacity values
demonstrated that the presence of non�variables inside the GW Vir instability
strip can be explained by an excessively large abundance of helium (Quirion
et al., 2004). Thus, the GW Vir instability strip is intrinsically impure.

5.3. V777 Her Stars

By direct analysis with ZZ Ceti stars, Winget et al. (1982b) predicted that DB
white dwarf stars should show photometric variability due to g−mode pulsations.
The excitation mechanism is the κ−mechanism due to partial ionization of he-
lium. Soon after, the �rst pulsating DB white dwarf star GD 358 was found by
Winget et al. (1982a). GD 358 shows a complicated non�stable period spectrum
as can be seen from Figure 12, where light curves from 1996 to 2006 are shown
(Provencal et al., 2009). The star shows 27 periods, corresponding to 10 inde-
pendent modes, between 250 s and 1000 s. The general frequency locations of the
identi�ed modes are consistent throughout the years, but the high�k multiplets
exhibit signi�cant variability in structure, amplitude and frequency (Provencal
et al., 2009). These changes in the amplitude spectrum with timescales of a few
years are thought to be consequences of strong non�linear coupling, due to the
interaction between the pulsations and the convective layer.

The instability strip of V777 Her stars extends from ∼ 32 000 K to ∼ 22 400
K in e�ective temperature and from 7.5 to 8.3 in surface gravity, with periods
between 120 s and 1100 s, and amplitudes of 0.05 to 0.3 mag (Fontaine & Bras-
sard, 2008; Córsico et al., 2019). There are ∼ 50 pulsating DB white dwarfs
known to date, 27 of them depicted with triangle�up symbol in Figure 9.

The V777 Her instability strip is currently non�pure. However, this fact is
related to the determination of the e�ective temperature and log g obtained from
�tting of the spectra with model atmospheres. Small and undetected amounts
of hydrogen in the helium�rich envelope can lead to spectroscopic e�ective tem-
peratures considerably lower than those obtained with pure helium model at-
mospheres. Thus, the purity of the V777 Her instability strip is still an open
subject in the �eld.

5.4. ELMV and Pre�ELMV

Extremelly low mass white dwarfs are helium core stars with stellar masses below
0.3M� (Pelisoli & Voss 2019), formed necessarily by close binary evolution, that
correspond to the low mass wing of the mass distribution of white dwarf stars
(Kepler et al., 2016, 2019). A typical chemical pro�le of an ELM white dwarf is
shown in Figure 5.

Contrary to the case of other pulsating white dwarf classes, in pulsating
ELMs g−modes should be core modes, while the propagation region for p−modes
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Figure 12. Light curve of GD358 from 1996 to 2006. Credit: Proven-
cal et al. (2009). c© AAS. Reproduced with permission.

extends to the surface. This is shown in Figure 13, where the characteristic
frequencies are depicted for a model with 0.198M� and Teff ∼ 8950 K. This is
due to the low degeneracy degree in the center regions.

Pulsational instabilities in ELMs were predicted by Steinfadt et al. (2010),
based on scaling of the thermal timescale at the basis of the outer convective zone
with surface gravity. Two years later, the �rst pulsating ELM, J184037.78+642312.3,
was reported by Hermes et al. (2012), with periods between 2000 s and 4900 s,
much longer than the ones observed in ZZ Ceti stars. This can be expected
since its stellar mass is ∼ 0.17M�. These long periods were identi�ed with
g−mode pulsations. Binarity was also con�rmed, with a detection of a degen-
erate companion of ∼ 0.8M� and an orbital period of 4.6 h. Hermes et al.
(2013) reported the detection of two variable ELMs (ELMV) with one of them,
J111215.82+1117450.0, showing a period of 134 s apart from long periods in the
range of 1792�2855 s. This short period is consistent with p−mode pulsations
for the stellar masses of ELM white dwarfs.

The instability strip for ELMV white dwarfs extends in the e�ective tem-
perature range of 7800−10 000 K and from 6.0 to 6.8 in log g. To date 11 objects
are known as variable ELMs, depicted with green circles in Figure 9. All but one
object show long periods from 1100 s to 6300 s, while the short periods detected
for J111215.82+1117450.0 are 134.275 s and 107.56 s (Hermes et al., 2013). Vari-
ation amplitudes range from 0.002 to 0.044 mag. The instability strip of ELMV
stars can be considered as the natural extension of the ZZ Ceti instability strip to
low stellar masses, since the excitation mechanism is the same for both, i.e., the
κ−mechanism due to the opacity bump caused by partial ionization of hydrogen
at the base of the hydrogen�rich envelope.

Pre-ELM stars are identi�ed as the evolutionary progenitors of ELM white
dwarfs. They are found at high luminosity, low log g compared to the ELMs,
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during the loop in the HR diagram caused by residual hydrogen�burning (see
Figure 3, Istrate et al., 2014b). The surface composition is a mixture of hydrogen
and helium (Gianninas et al., 2016), suggesting that chemical di�usion is being
inhibited (Córsico & Althaus, 2016; Istrate et al., 2016).

The �rst variable pre�ELM was reported by Maxted et al. (2013), WASP
J024743.37-251549.2, showing periods in the range 380�420 s. The star is a low
mass object (0.186M�) in an eclipsing binary with an orbital period of 16 h with
a 1.356 M� companion. To date, there are 10 known objects (magenta triangle�
up in Figure 9) with periods in the range of 300 to 5000 s and amplitudes of
0.001�0.05 mag. The instability strip for pre�ELMs extends from 800 K to 13 000
K in e�ective temperature and from 4.0 to 5.0 in surface gravity. Pulsations in
pre�ELM stars are identi�ed with high frequency p−modes and intermediate
frequency mixed p − g modes. Due to the peculiar shape of the Brunt-Väisälä
frequency in the inner regions, mixed modes show properties of p−modes in the
outer parts and of g−modes in the inner parts of the star (Córsico & Althaus,
2016).

Je�ery & Saio (2013) found that modes in pre�ELM models are excited by
the κ−mechanism combined with convection, operating mainly in the second he-
lium ionization zone (He+ → He++), provided that the driving region is depleted
in hydrogen.

6. Blue Large Amplitude Pulsators

The Blue Large Amplitude Pulsators (BLAPs) were discovered by Pietrukowicz
et al. (2017), as a result of a long time photometric study of the OGLE. These
objects show regular brightness variations with periods in the range 20 � 40 min
and amplitudes of 0.2 � 0.4 mag. The light curves have a characteristic sawtooth
shape, similar to the shape of classical Cepheids and RR Lyrae-type stars that
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Figure 14. The location of the BLAPs on the log Teff − log g diagram
(shaded rectangle area, blue star), along with other classes of pulsating
stars: ELMVs (red dots), pre�ELMVs (orange dots), pulsating sdBs
(violet triangles) and δ Sct/SX Phe stars (green dots). Solid (dashed)
black lines correspond to low-mass He-core pre�WD evolutionary tracks
with Z = 0.01 (Z = 0.05). Credit: Romero et al. (2018).

pulsate in the fundamental radial mode. The BLAP stars are blue hot objects
with e�ective temperatures of ∼ 30 000 K, and log g ∼ 4.2− 4.6 similar to main
sequence and pre�ELM stars. In addition, their e�ective temperature is similar
to that of hot subdwarf stars. This is shown in Figure 14 where the position of the
BLAPs in the Teff − log g plane is depicted, compared to variable hot subdwarfs
and main sequences pulsators. Pietrukowicz et al. (2017) proposed that BLAPS,
are either shell�burning, helium core, low mass stars or core helium burning pre�
sdOB stars. Exploring the �rst possibility, Romero et al. (2018) proposed that
BLAPs are hot pulsating pre�ELM WD stars with masses of ∼ 0.30− 0.40M�.
They found that pulsations can be excited by the κ−mechanism due to the iron
peak elements, as it is the case for pulsating hot subdwarf stars, for fundamental
and low radial order g−modes. Romero et al. (2018) found pulsation instability
only in models where the total initial metallicity was increased to �ve times the
solar metallicity. However, they proposed that only an enhancement of the iron
peak elements in the driving region would be enough for pulsations to be excited.
This was proved later by Byrne & Je�ery (2018).

Recently, a new class of pulsating stars was reported by Kupfer et al. (2019).
They show similar e�ective temperatures as BLAPs but higher log g values, and
thus are called high�logg�BLAPs (purple squares in Figure 9). They are monope-
riodic, showing large pulsation amplitudes of > 5%, with periods in the range
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200�475 s, consistent with radial oscillations. To test the evolutionary origin
of these objects, Kupfer et al. (2019) computed models for low�mass helium�
core pre�white dwarfs and low mass core helium�burning stars, and found that
the pulsation periods show better agreement with the pre�white dwarf models.
This suggests that the high�logg�BLAPS and the BLAPS are both helium core
pre-ELM white dwarfs with stellar masses of ∼ 0.25− 0.35M�.

7. Final Remarks

This work was intended to give a brief review on pulsating white dwarf stars
for those who whant to start learning about these very interesting objects. I
recommend the reviews of Winget & Kepler (2008); Fontaine & Brassard (2008)
and Córsico et al. (2019) and references therein, for more details.

The number of white dwarf in general, and of pulsating white dwarfs in par-
ticular, keeps growing due to large spectroscopic surveys and space and ground-
based observations. In particular, the Kepler satellite allowed us to discover new
phenomena associated with stellar pulsations and to increase our knowledge on
variable white dwarf stars. Further detection will allow us to study the interiors
of white dwarfs through asteroseismology, and with that to uncover the evolution
of our Galaxy.

Acknowledgments. I would like to thank Alina Istrate, Ben Thomas Pep-
per, Gabriel Lau�er Ramos, Ingrid Pelisoli and S. O. Kepler.
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Abstract.
This Chapter provides a brief description of the di�erent classes of

pulsating A-F stars emphasising hybrids δ Sct-γ Dor stars. A modelling
technique for hybrid δ Sct-γ Dor stars is presented along with the typ-
ical features that these stars �print� on their light curves and frequency
spectra. Finally, we present a very di�erent family of pulsating stars over-
lapping the region where pulsating A-F stars usually lie, the precursors of
the so-called extremely low mass white dwarf stars. These stars have very
similar atmospheric characteristics and their oscillation periods partially
overlap making them di�cult to discern. We discuss tools based on their
seismic oscillation properties to distinguish them.

Key words: asteroseismology � stars: oscillations � stars: interiors

1. The Zoo of Pulsating A-F Stars

There are many families of pulsating stars grouped in di�erent regions of the
Hertzsprung-Russel (H-R) diagram. Figure 1 shows schematically some of these
families in a seismic H-R diagram. Pulsating A-F stars lie approximately at the
lower part of the classical instability strip and its intersection with the Main
Sequence (MS) toward temperatures between 6700 and 8500 K. This interesting
region of the seismic H-R diagram, harbours a large variety of families and sub-
families of pulsating stars with di�erent physical and pulsational characteristics
at di�erent evolutionary stages (pre-MS, MS and post-MS).

Among these families, the best known are: solar-like stars with solar-like
oscillations, the rapid oscillators Ap stars, SX Phoenicis stars, λ Boo stars, γ
Dor, δ Sct and hybrids δ Sct-γ Dor stars. We will begin this section with a brief
description of each of these families.

1.1. Solar-Like Stars With Solar-Like Oscillations

The internal structure of these stars is similar to the Sun, they have a radia-
tive core with a large convective envelope. In general, stellar pulsations can be
classi�ed according to their driving mechanism in self-excited oscillations and
stochastic oscillations. Self-excited oscillations arise from a perturbation of the
energy �ux resulting in a heat-engine mechanism. If the variation is in the opac-
ity, we have the κ-mechanism; if the variation cames from the temperature rising
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ing stars. The classical instability strip is indicated in red lines, the
beginning of the MS in black dashed line and the cooling track in black
dotted line.



Pulsating A-F Stars 217

from nuclear reactions, then the operating mechanism is the ε-mechanism. On
the other hand, stochastic oscillations are excited and damped usually by turbu-
lent convection. Solar-like oscillations are driven stochastically and are expected
to be present in all stars with outer convective zones.

1.2. Rapidly Oscillating Ap Stars

Rapidly Oscillating Ap (RoAp) stars belong to Population I. They have a par-
ticular chemical surface composition caused by atomic di�usion (speci�cally due
to the e�ect of gravitational settling and radiative levitation). One of their main
characteristics is their strong magnetic �eld. In addition, they usually present
spots and strati�cation (Aerts et al., 2010). Their oscillation periods are between
∼ 4.7 and 21 min and they correspond to high radial order, low degree pressure
modes (or p-modes).

1.3. SX Phoenicis Stars

These stars belong to Population II and are characterised by low metallicities
between 0.002 and 0.0002. SX Phoenicis (SX Phe) stars have masses in the range
0.9 to 1.15 M� and oscillations very similar to those of δ Sct stars. They are
thought to be blue straggler stars, i.e. MS stars in a open or globular cluster that
are more luminous and bluer than stars at the MS turno� point for the cluster.
One possible explanation for this behaviour lies in mass transfer between two
stars born in a binary star system. The more massive star will evolve �rst and
as it expands, will over�ow its Roche lobe. Then mass will quickly transfer from
the initially more massive companion on to the less massive one and this would
explain why there would be MS stars more massive than other stars in the cluster
which have already evolved o� the MS.

1.4. λ Boo Stars

This family of pulsating A-F stars, consists of Population I stars with a super�cial
chemical impoverishment possibly due to the accretion of metal de�cient gas in
the circumstellar environment. Recent studies indicate that not all λ Boo stars
are young and are found at a variety of MS ages (Murphy et al., 2020). Their
oscillations are similar to δ Sct stars.

1.5. δ Sct Stars

One of the most representative group of pulsating A-F stars are δ Sct stars. They
can be found on the MS and pre-MS with masses usually between 1.5 and 2.5
M�. They oscillate in non-radial p-modes of low to intermediate radial order,
and also show radial modes, with periods usually between 0.008 and 0.42 days
which allow to probe the external layers of the star. These oscillations are driven
mainly by the κ-mechanism operating in the partial ionisation He layer and the
turbulent pressure acting in the H ionisation zone (Antoci et al., 2014). Their
internal structure is characterised by a convective core surrounded by a radiative
layer with a thin outer convective layer. In the Sun, this layer encompasses
approximately 30% of the Sun, while in δ Sct stars this layer encompasses ∼ 1%.
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1.6. γ Dor Stars

Another important group among pulsating A-F stars is formed by γ Dor stars.
These stars are found in pre-MS, MS and post-MS. In general, they are less
massive than δ Sct stars, with masses between 1.5 and 1.8M� and e�ective tem-
peratures between 6700 K and 7500 K. They pulsate in high radial order gravity-
modes (or g-modes) with periods around 8 hrs and 3 d driven by the convective
blocking mechanism. In γ Dor stars, the convective envelope is thought to be
deeply enough to reach the layer where the κ-mechanism usually operates, i.e.
the ionisation He II layer. The heat �ux is then conducted by convection and
the κ-mechanism is suppressed. The presence of g-modes in these stars allows
us to probe the near-to-core layers.

1.7. Hybrid δ Sct-γ Dor Stars

These stars pulsate in many radial and non-radial p- and g-modes which makes
them excellent targets for asteroseismology. The simultaneous presence of p- and
g- modes allows to explore their external layers as well as the near-to-core layers,
respectively. A typical light curve of this kind of stars often shows two separate
ranges of frequencies: one corresponding to high frequencies characteristic of δ
Sct (p-modes) and the other one at low frequencies usually characteristic of γ Dor
(g-modes) (see Section 2.1). They usually lie in the overlapping instability region
of δ Sct and γ Dor stars. However, the advance of space missions opened new
interrogations due to the interesting results of such observations. For instance,
several new hybrid δ Sct-γ Dor stars were found thanks to these missions and
some of them lie outside their predicted instability strip. Moreover, the same is
true for δ Sct and γ Dor stars. These observations showed that hybrid δ Sct-γ
Dor stars are more common than expected and also made us wonder about the
intrinsic characteristics of δ Sct, γ Dor, and hybrid stars, along with the driving
mechanisms operating in these stars. It is believed that both mechanisms operate
in hybrid stars: the κ-mechanism and the convective blocking mechanism, but
up to date these have not been further analyzed.

2. Asteroseismology of Hybrid δ Sct- γ Dor Stars

As we mentioned before, asteroseismology is a magni�cent tool which allows us
to obtain valuable information about the interior variable stars and the physical
processes that take place inside them. The main aims of asteroseismic modelling
of stars are to get high precision in astrophysical parameters such as the mass
(M), the radius (R) and the age; and to improve input physics of the stars by
means of a comparison between theory and observations. The input physics of the
target object is �rst adjusted to derive a stellar model and theoretical predictions
for oscillations. Then, these predictions are compared to the observed proper-
ties of identi�ed oscillation modes through photometric, spectroscopic and/or
astrometric observations.

Next, we will see the features commonly found in the light curves of hybrid
δ Sct-γ Dor stars and we will review the main steps for a particular kind of
modelling of these stars.
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2.1. Light Curves and Frequency Analysis of Hybrid δ Sct-γ Dor
Stars

In this section, we will introduce the main features usually present in the fre-
quency spectra of hybrid δ Sct-γ Dor stars as well as some corrections that
usually have to be made in the light curves, specially for those provided by the
COnvection ROtation et Transits planétaires (CoRoT) CNES/ESA space mis-
sion (Auvergne et al., 2009) before we can perform the frequency analysis. This
space mission was launched in 2006 and o�ers �ve observing runs with durations
of 59, 28, 157, 148 and 20 days with di�erent integration time: 1, 32 and 512 s.

One of the phenomena that usually a�ect light curves and should be in-
spected before performing the frequency analysis is the impact of cosmic rays.
These impacts lead to individual outlier measurements that should be removed
before the frequency analysis. Another phenomenon we have to take into account
for CoRoT light curves is that they usually have a slope which translates into
frequencies below 0.25 c/d (Chapellier & Mathias, 2013). These frequecies must
not be taken into account during the frequency analysis. Finally, it is important
to remove the rotational frequency of the satellite (forb = 13.97213 c/d) and its
harmonics (n ∗ forb), in order to employ only pulsational frequencies during the
modelling.

Let us consider as example the star CoRoT ID 102358531 observed during
the third CoRoT long run, LRa03, which targeted the Anti-Galactic center.
According to the EXODAT database (Deleuil et al., 2009) this star has α =
6h12m29.58s, δ = +4◦58′54.2244′′, it has an A0V spectral type and 2MASS
photometry J = 13.363, H = 13.191 and K = 13.085. In Figure 2 we show
the resulting light curve of CoRoT ID 102358531. This light curve clearly shows
a hybrid nature for this star, since it displays both low and high frequency
components corresponding to the γ Dor and δ Sct domains, respectively.

After cleaning the light curve we are in conditions to derive the frequency
spectrum yielded by the Fourier transform in order to obtain the individual fre-
quencies. As expected, the resulting frequencies from light curves of hybrid δ
Sct-γ Dor stars, are usually grouped within two di�erent domains: one corre-
sponding to low frequencies typically related to γ Dor stars, and another domain
at higher frequencies typically associated with δ Sct stars. In Figure 3 we show
these two groups in the frequencies spectrum of CoRoT 102358531.

Once we obtained the individual frequencies, the search of pattern begins
with the aim to identify each frequency and to perform later an asteroseismic
modelling. There are di�erent kinds of patterns to look for during the frequency
analysis of hybrid stars. We will mention here the mean period spacing of g-
modes and rotational splittings.

As we mentioned before, hybrid δ Sct-γ Dor stars oscillate in high order
g-modes. According to the asymptotic theory (Tassoul, 1980) the di�erence be-
tween the periods of two consecutive radial order modes with the same harmonic
degree (`) tends to be constant for higher radial order modes. Therefore, if we
�nd consecutive equidistant periods in the γ Dor range, these will probably cor-
respond to an asymptotic (n >> `) series of g-modes with the same ` and high
radial order. These series will allow us to derive later the mean period spacing
of g-modes (if the series has n periods, Πi, equally separated, then the mean
period spacing is (Πn − Π1)/(n − 1)). This quantity is extremely useful for the
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Figure 2. Light curve of the star CoRoT 102358531 with di�erent
timescales, a subset over 10 d at the top and a zoom into one day
subset at the bottom.
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study of hybrid δ Sct-γ Dor stars since it can be employed as an indicator of the
evolutionary stages of these stars.

The asymptotic period spacing for g-modes can be written in terms of the
Brunt-Väisälä frequency (N):

∆Πa
l =

2π2√
l(l + 1)

[∫ b

a

N

r
dr

]−1

(1)

where a and b are the inner and outer boundaries of the propagation zone of
g-modes, respectively. As stars evolve on the MS and consume the H in the core,
the Brunt-Väisälä (B-V) frequency, which governs the behaviour of g-modes, is
a�ected by the change of the convective core. For masses greater than ∼ 1.5M�,
the core shrinks as the star evolves and its edge moves inward. In the case of
hybrid stars, the propagation region of g-modes belongs to the inner region of
the star and the lower boundary of this region begins immediately after the edge
of the convective core. Therefore, during the evolution, the integral increases
since it expands toward inner regions resulting in a decreasing asymptotic period
spacing of g-modes and therefore a decreasing mean period spacing. This allows
us to employ the mean period spacing, usually detected in hybrid stars, to place
restrictions for the modelling of these stars.

Another extremely useful patterns that should be investigated during the
frequency analysis of these objects are rotational splittings. Pulsating A-F stars
are intermediate to fast rotators. In rotating stars, modes can be separated into
several components forming multiplets. Considering rigid rotation and the �rst
order perturbation theory, the components of the rotational multiplets are given
by:

νnlm = νnl +m(1 − Cnl)
Ω

2π
(2)

where νln is the central mode of the multiplet, Cnl is the Ledoux constant and
Ω/2π is the rotational frequency of the star. The Ledoux constant tends to zero
for p-modes with an increase in the radial order and tends to 1/(`(` + 1)) for
g-modes. For instance, if we �nd in the δ Sct regime, the next frequencies series:
νnl − f , νnl, νnl + f they might correspond to a triplet (` = 1) and we would be
able to derive the rotational velocity.

This information along with any other information we can obtain through
other methods such as spectroscopy and astrometry should be employed in the
theoretical modelling of stars. Next subsection will be devoted to the modelling
of hybrid δ Sct-γ Dor stars.

2.2. Modelling Hybrid δ Sct-γ Dor Stars

There are di�erent ways to perform a modelling of a star. In this subsection we
will describe a classical grid-based modelling applied to hybrid δ Sct-γ Dor stars
based on statistic searches. This procedure is fully described in Sánchez Arias
et al. (2017) along with its application to 5 hybrid stars.

The �rst step in the modelling of stellar interiors is to select a suitable
code to create the models. There are several codes to compute stellar structure
and pulsational models. Among the best known codes to develop stellar interior
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structure models we can mention MESA (Paxton et al., 2011), CESAM2k (Morel
& Lebreton, 2008) and LPCODE (Althaus et al., 2005). The �rst two mentioned
codes allow the development of stellar interior models for a wide range of masses
at di�erent evolutionary stages including also di�erent physical phenomena such
as rotation, di�erent theories of convection and di�usion of chemical elements,
among others. On the other hand, LPCODE was fully developed at La Plata Ob-
servatory and is also widely employed to simulate the evolution of low-mass stars,
mainly, at di�erent stages. This code is coupled to an oscillation code named
LP-PUL(Córsico et al., 2006) which allows computing adiabatic oscillation and
those which take into account the excitation mechanism, i.e. non-adiabatic oscil-
lations. Apart from LP-PUL, we can mention ADIPLS (Christensen-Dalsgaard,
2008) and GYRE (Townsend & Teitler, 2013) among the best-known oscillation
codes. Both codes allow the calculation of adiabatic oscillations and the latter
also calculate non-adiabatic oscillations.

Once we have selected a suitable code, we must set the input physics for
the target object in order to obtain representative models. The main ingredients
to be set are the nuclear reaction network, the opacity tables, the equation of
state, a theory for the mixing of elements, a theory for stellar rotation if any,
to decide which and how extra mixing process are going to be included, which
kind of oscillations we want to study, etc. The input physics should be carefully
selected, since the output model strongly depends on it, obviously. We encourage
the reader to look for the details of the input physics in Sanchez Arias et al.
(2017) and we will focus here in the steps of a particular modelling technique
applied to the hybrid δSct-γ Dor stars.

The procedure we will describe next is a grid-based modelling consisting of
a statistic search of the model which best �ts the observations in a previously
constructed grid of representative models of hybrid δ Sct-γ Dor stars. After hav-
ing carefully selected the input physics in the code, the next step is to construct
a grid of representative models. In Figure 4 we can see the location of a sample
of δ Sct (open circles), γ Dor (grey squares), and hybrid δ Sct-γ Dor (red star
symbols) stars taken from Grigahcène et al. (2010) in an H-R diagram. The grid
should fully cover the region where hybrid δ Sct-γ Dor stars usually lie in the H-
R diagram in order to employ it for di�erent targets. Precisely, with the aim to
encompass these objects with our models, we varied di�erent parameters in our
grid such as the mass (1.2 ≤ M?/M� ≤ 2.2), the metallicity (0.01 ≤ Z ≤ 0.02),
the overshooting1 parameter (0 ≤ f ≤ 0.03) at di�erent evolutionary stages
from the Zero Age Main Sequence (ZAMS) to the Terminal Age Main Sequence
(TAMS).

For each evolutionary sequence, we recorded the stellar structure model ev-
ery 10 K approximately and we computed for them the adiabatic oscillations,
speci�cally we calculated radial modes as well as non radial p- and g-modes with
harmonic degree of 1, 2 and 3 with periods between 1200 s and 300000 s encom-
passing widely the usual periods of the modes found in these stars. Some of the
evolutionary sequences of this grid are shown in Figure 4. Those corresponding

1Overshooting is the mixing of chemical elements beyond the formal convective boundary set
by the Schwarzschild criterion. This phenomenon extends the evolutionary tracks during the
evolution on the MS since extra mixing adds more H to the core to be burnt.
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to a metallicity of 0.01 with an overshooting parameter of 0.03 are depicted in
cyan; while those in black correspond to a metallicity of 0.015 and no overshoot-
ing, for di�erent masses indicated with black numbers. It can be seen that the
models of the grid encompass the occupied region by these observed stars.

Once we have a grid of representative models for the kind of object we want
to study, we are able to perform a search for the model that best reproduces
the observations of a given target star. The usually procedure in this grid-
based modelling is to calculate a �quality function� for each model. This quality
function compares observationally derived quantities with those calculated from
the models. This function should re�ect the nature of the objects we want to
model, which in this case are hybrid δ Sct-γ Dor stars. For instance, hybrid stars
oscillate in high order g-modes (as γ Dor stars) and low- to intermediate-order
p-modes (as δ Sct stars). As we mentioned before (Section 2.1) it is possible to
recognise high order g-mode features during the frequency analysis and employ
that pattern as a constraint in the search of the best model. Therefore, including
this pattern (or the mean period spacing) in the quality function of hybrid δ Sct-γ
Dor stars, along with the information of the individual frequency p- and g-modes,
boost this search e�ciency.

As an example of the modelling of hybrid stars, we show the application
of this procedure for HD 49343 as it was performed in Sánchez Arias et al.
(2017). This star was previously studied in Brunsden et al. (2015). We used the
information about the individual periods in the γ Dor range ([28800-288000]s), as
well as in the δ Sct range ([1080-28800]s) and the observed mean period spacing
of g-modes (∆Π = 2030.4s) to create the �quality function�.

First we calculated the mean period spacing of g-modes for each model. In
Figure 5 we show the mean period spacing of g-modes calculated in the range
of the observed g-mode periods, for those models of the grid with Z = 0.01 and
f = 0.01 as an example. Each curve corresponds to certain mass and models
in the ZAMS have higher mean period spacings (see Section 2.1). As already
mentioned, the mean period spacing of g-modes decreases with the evolution.
Therefore, this quantity can be used as an indicator of the evolutionary stage of
hybrid δ Sct-γ Dor stars. After calculating this quantity, we selected for eachM?,
Z and f , the model which best reproduces the mean period spacing of g-modes
derived from observations, i.e. those models closer to the straight line in Figure
5.

Next, for the models selected in the previous step we performed a period-
to-period �t of p-modes as well as of g-modes, including this information in the
quality function. The resulting quality function is:

F =

N∑
j=1

[∆Πn − ∆Π]2j
(σ2

∆Π
)j

+ χp
j + χg

j , (3)

where ∆Πn is the calculated mean period spacing that best reproduces the ob-
served one (∆Π) for a certain Z, M? and f , σ∆Π is the error corresponding to
the observed mean period spacing, χp

j is the sum of the di�erence between the
periods of p-modes calculated for each model and the period observed in the δ
Sct range divided by the error corresponding to the observed frequency; and χg

j

is the same for individual g-modes. This quality function has its own peculiar-
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ities depending on the observed star. For instance, if the harmonic degree was
determined for a certain mode, this quality function can be properly adjusted in
order to re�ect this information, as it has been performed in Sánchez Arias et al.
(2017) for every considered star.

Finally, we search for the model with the minimum quality function, which
will be the model that best reproduces the observed frequency spectrum of the
star.

As it has been mentioned, this is only one way to perform an asteroseismic
modelling based on a grid of models. There are several ways to search for a
representative model, for instance you can perform a similar search including
more information in the quality function such as spectroscopic data.

As a result of the modelling, we obtain valuable information about our
object. For example, in the case of HD 49434, we derived the next astrophysical
parameters: M∗ = 1.75M�, Z = 0.01, f = 0.01, Teff = 7399K, log g = 3.85,
Rstar = 2.57R�, Age = 1169.08 × 106yr, L∗ = 19.39L� and ∆Π = 2045.42s.

3. Comparing the Asteroseismic Properties of Pulsating Pre-extremely
Low Mass White Dwarf and δ Scuti Stars.

There are several problems that can be addressed with asteroseismology. The
problem we will focus on in this section concerns the distinction between two very
di�erent families of pulsating stars, which have similar atmospherics parameters
(Teff and log g).

Thanks to the advance of space missions, new kinds of families started to be
discovered. The family of variable stars we are interested in, are the precursors of
the so-called the extremely low mass white dwarf stars or pre-ELMV. Extremely
low mass white dwarf (ELM) stars (or low mass He-core white dwarfs) are the
result of a strong mass transfer event at the red giant stage of low mass star
evolution in close binary system. Their masses are below 0.3 solar masses and
they oscillate in p- and g-modes driven by the κ-mechanism operating in the
second He ionisation zone with periods between 380 and 3500 s approximately.
The precursors of these white dwarf stars lie before the cooling sequence of
ELM white dwarfs, in the region where pulsating A-F stars usually are (see
Figure 6). This is one of the reasons that makes them di�cult to distinguish
from some pulsating A-F stars, specially δ Sct stars, as we will see next. The
correct distinction between these types of pulsating stars will help to discover new
members for pre-ELMV white dwarfs and to understand the formation channels
for this new family of pulsating white dwarf stars.

In Sánchez Arias et al. (2018) we provided asteroseismic tools in order to
distinguish between these two di�erent families, the δ Sct stars and pre-ELMV
white dwarf stars. Here we will present a brief resume on such tools aimed to
highlight the power of asteroseismology.

Figure 6 shows the position in the HR diagram of δ Sct stars in white
circles from Uytterhoeven et al. (2011), Bradley et al. (2015) and Bowman et al.
(2016). SX Phe stars are those from Balona & Nemec (2012) depicted in magenta
circles. With blue diamonds we show the position of the known pre-ELMVs
(Maxted et al., 2013, 2014; Gianninas et al., 2016), while the ELMVs are depicted
with light green triangles (Hermes et al., 2012, 2013a,b; Kilic et al., 2015; Bell



228 J. P. Sánchez Arias

et al., 2017). It is also displayed the position of the pulsating object J0757+1448
reported for the �rst time in Sánchez Arias et al. (2018) with a cyan diamond and
the cyan squares indicate the position of two stars reported by Corti et al. (2016),
J1730+0706 and J1458+0707. These three stars lie in our region of interest where
pre-ELMV stars can be confused with δ Sct star. The nature of these objects was
discussed in the previously mentioned paper. We have also included theoretical
evolutionary tracks for low mass He-core WD from Althaus et al. (2013) (dotted
black lines) and Serenelli et al. (2001) (dashed black lines). Black numbers
correspond to the values of the stellar mass of low mass He-core WD evolutionary
tracks. In the same �gure we illustrate MS evolutionary tracks (with red lines),
for di�erent values of metallicity (Z), mass (M?) and overshooting parameter
(f) from Sánchez Arias et al. (2017). Besides, we included the location of the
theoretical blue edge and the empirical red edge of the δ Sct instability strip
from Pamyatnykh (1999), and also the blue edge of the pre-ELMV instability
strip (Córsico et al., 2016).

From this �gure, we can see that the theoretical evolutionary sequences
of pre-ELMV stars partially overlap with those corresponding to MS stars and
the region where pre-ELMVs can lie partially overlaps with the region occupied
by the δ Sct stars. Besides, we note that both instability strips overlap for
3 ≤ log g ≤ 4.4. In summary, pre-ELMV and δ Sct stars have very similar
atmospheric parameters Teff and log g, their evolutionary sequences partially
overlap as well as their instability strips. In addition, both families show an
overlapping range of pulsating periods (see Figure 7). Therefore, some pre-ELMV
stars might be polluting the region where δ Sct usually lie. With the aim to
provide tools to discover more interesting pre-ELMV stars, and distinguish them
from δ Sct stars, we analysed and compared theoretical models of their structure
and oscillations. The selected models are represented in orange triangles in
Figure 6.

Although both kinds of families have the previously mentioned similarities,
pre-ELMV and δ Sct stars are at very di�erent stages of their evolution and
their internal structure is di�erent. For instance, δ Sct stars have radii between
1.5 and 3.5 R� while pre-ELMV stars with the same log g have ∼ 0.6R� and
the density for δ Sct stars are much lower than for pre-ELMV white dwarf stars.
This fact is of course re�ected in their pulsational behaviour, therefore employing
only asteroseismology should allow us to distinguish between these kind of stars
despite their similar atmospheric parameters.

In order to do this, in Sánchez Arias et al. (2018) we selected, as we men-
tioned, two sets of models of each type of family in di�erent regions of the H-R
diagram in which these families can be incorrectly classi�ed, and we measured
the period di�erences at di�erent ranges of mode periods for each type of stars.
Speci�cally we found that the mean period di�erence of p-modes of consecutive
radial orders for δ Sct model is at least four times larger than the mean period
spacing (or the mean period di�erence of g-modes of consecutive radial order) for
the pre-ELMV white dwarf model in the period range [2000−4600] s. Therefore,
if we detect two periods and we calculate their di�erences, assuming they have
consecutive radial order, we can say whether the star belongs to the pre-ELMV
family or to the δ Sct star family according to the obtained value. However, mode
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Figure 6. Teff − log g diagram showing the location of ELMV stars
(light green triangles), pre-ELMV stars (blue diamonds) and δ Sct stars
(white circles) including SX Phe stars (magenta circles). The atmo-
spheric parameters are extracted from di�erent papers detailed in the
main text. The error bars for the δ Sct and the SX Phe stars are
depicted in black and magenta respectively. Also, we included the the-
oretical evolutionary tracks of low mass He-core WDs (black dotted and
dashed lines) from Althaus et al. (2013) and Serenelli et al. (2001), and
MS evolutionary tracks (red lines) from Sánchez Arias et al. (2017).
Black numbers correspond to di�erent values of the stellar mass of low
mass He-core WDs, whereas red numbers are associated to the value
of the mass, metallicity and overshooting parameter of MS stars. It is
also shown the location of the theoretical blue edge and the empirical
red edge of δ Sct instability strip from Pamyatnykh (1999), and also
the blue edge of the pre-ELMV instability strip (Córsico et al., 2016).
Orange triangles show the position of the template models. The cyan
squares indicate the position of J1730+0706 and J1458+0707, and the
cyan diamond represents the position of J0757+1448. Figure extracted
from Sánchez Arias et al. (2018).
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Figure 7. Scheme showing the usually ranges of the observed modes
periods for pre-ELMV in black, δ Sct in red and γ Dor stars in green.
The γ Dor range extends up to ∼260000 s.

identi�cation is not an easy task and in general we cannot verify the hypothesis
of consecutive radial order for the observed periods.

Therefore, we can employ another tool which does not depend on mode
classi�cation: the rate of period change. As stars evolve their structure changes,
therefore their frequencies will also change since they depend on the stellar struc-
ture. On the MS the periods change slowly as the stars burn H in their core,
while in the stages prior to the cooling sequence of white dwarf stars, they spend
just a few years crossing the HR diagram very quickly. Therefore the rate of
period change of δ Sct stars and pulsating pre-ELM white dwarf stars should
be very di�erent. This is exactly what we found in our models. The predicted
rate of period change in δ Sct stars is dP

dt ≈ 5.45× 10−5 s/yr, and for pre-ELMV
WD stars is dP

dt ≈ −1.42 × 10−3 s/yr. Therefore, this di�erence allows us to
distinguish between these two kinds of families without mode identi�cation and
is based only on the oscillation properties of these stars.

4. Summary

In this Chapter we brie�y characterised pulsating A-F stars. The di�erences
present between each family belonging to this interesting group allow us to in-
vestigate di�erent physical phenomena such as the di�erential rotation, magnetic
�eld, conservation of angular transport and excitation mechanisms in low mass
stars at the pre-MS, MS and post-MS phases.

We focused on hybrid δ Sct-γ Dor stars since the simultaneous presence of
p- and g- modes allows us to probe their internal layers as well as their external
regions turning them into excellent targets for asteroseismology. We have intro-
duced the main characteristics in the light curves of these objects, along with
some of the most useful features in the frequency spectra we should recognise to
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perform a modelling of the star. Furthermore, we brie�y described one method
to perform a grid-based modelling of hybrids δ Sct-γ Dor.

Finally we introduced a very di�erent family of pulsating stars, pre-ELMV
white dwarf stars, which lie very close to pulsating A-F stars and might be pol-
luting the region where δ Sct stars usually lie. We showed how asteroseismology
can be employed to distinguish them and we presented two di�erent asteroseismic
tools to achieve this goal in order to discover new interesting pulsating pre-ELM
white dwarf stars.
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Abstract. The post-main sequence evolution of massive stars still bears
many unknowns. In particular, the physical processes involved in trigger-
ing enhanced mass-loss or eruptions are yet to be established. In this
Chapter, the post-main sequence evolution of massive stars, and the var-
ious phases which are well-known for their mass ejections, are brie�y
touched upon. Amongst those transition phases, two classes of objects
are discussed in more detail: the B-type supergiants and the Yellow
Hypergiants. Their ability to perform pulsations is presented based on
observational and theoretical evidences. Moreover, the possibility of a
pulsation�mass-loss relation in these two classes of objects is delineated.
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1. Introduction to Massive Stars

Massive stars are stars that are born with initial masses > 8M�. They are few in
numbers, but their signi�cance lies in their powerful winds with which they enrich
their environments throughout their entire life in both momentum and chemically
processed material. With their enormous energy transfer, in particular during
their explosion as powerful supernovae, massive stars may trigger the formation
of next generations of stars and planets. Consequently, they play a crucial role
in the dynamical and chemical evolution of their host galaxies. It is therefore
surprising that stellar evolution theory is still most uncertain for massive stars,
despite their importance.

1.1. Evolution of Massive Stars - Theoretical Aspects

From a theoretical point of view, the various phases in the life of a massive star
are clearly de�ned, namely in terms of the individual nuclear burning stages. On
the main-sequence, the star burns hydrogen in its core into helium. As soon as
the hydrogen core is exhausted, the star turns o� the main-sequence and performs
pure hydrogen shell-burning in a layer around the core, whereas the core itself
contracts and heats until helium burning sets in. This sequence of core and shell
burning into heavier and heavier elements continues until the core consists only
of the iron ashes. In this �nal pre-supernova stage, the iron core is surrounded
by multiple shell-burning layers, of which the hydrogen-burning layer is closest
to the stellar surface, underneath the outermost, non-burning stellar hydrogen
envelope.

234
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From stellar evolution theory, all these individual burning phases can be
unambiguously determined and chronologically ordered. However, these phases
refer purely to the properties inherent to the stellar interior. They are not di-
rectly accessible by observations. Moreover, stars can rotate and undergo strong
mass-loss, in�uencing and altering signi�cantly the internal structure and surface
appearance of massive stars.

Stellar Winds An excellent introduction into the subject of stellar winds is
provided by the textbook of Lamers & Cassinelli (1999). Here, only some general
aspects are brie�y outlined.

Multiply ionized elements can have excited states with extremely short life-
times. If such a state is excited due to the absorption of a photon, the de-
excitation happens quasi instantaneously. Lines of such transitions are called
resonance lines. Based on their energies, these resonance lines typically arise
within the ultraviolet spectral range.

Ions of various elements in the upper atmosphere of a hot, massive star
can produce resonance lines. These ions continuously absorb photons from the
underlying photosphere into their resonance states. The re-emission occurs into
the solid angle 4π, resulting in a net momentum transfer from the photospheric
photons to the ions in predominantly radial direction. Consequently, the ions
experience a constant radial "push" and as such an acceleration beyond the
sonic point. Collisions between these accelerated ions and other elements and
free electrons in their vicinity drag these particles along, leading to a global
removal of matter from the stellar surface known as mass-loss via line-driven
winds. Depending on the physical properties of the star, the mass-loss during
some evolutionary phases can be so high, that the outer layers of the star are
completely peeled o�. If this happens, deeper layers, which are enriched in
heavier elements due to shell-burning processes, show up on the stellar surface,
and the star appears "stripped".

Stellar Rotation Rotation in the interior of stars can lead to mixing and hence
transportation of chemically processed material from deeper layers to the stellar
surface. But rotation has also another e�ect: it can deform the shape of the
star. With increasing rotation speed stars loose their spherical shape and instead
appear �attened. The best known rotating body that displays a deviation from
spherical symmetry is the Earth with its equatorial radius exceeding the polar
one by about 21 km, corresponding to a �attening of 0.00335.

The parameter ω = vrot,eq/vcrit de�nes the ratio between the equatorial
rotation velocity, vrot,eq, and the critical velocity, vcrit. The latter is given by
vcrit =

√
GMeff/Req, where G is the gravitational constant, Meff is the e�ective

stellar mass, i.e. the stellar mass reduced by the e�ects of radiation pressure
due to electron scattering, and Req is the stellar radius at the equator. Critical
rotation is reached if ω = 1, meaning that the centrifugal force balances the
gravitational force. In this case, Req = 1.5Rpole, where Rpole is the radius at the
pole, and a maximum �attening of (Req −Rpole)/Rpole = 0.5 is reached.

The deformation of the stellar shape has a further consequence. The com-
pression of the polar regions results in a heating of the poles, whereas the ex-
pansion of the equatorial regions leads to a cooling. This e�ect is also known
as gravitational darkening. The gradient in surface temperature from the pole
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to the equator leads also to a latitude dependence of the mass �ux. As long as
no change in the ionization state of the wind material occurs from the polar to
the equatorial region, rotating stars tend to have higher mass �ux over the poles
and less mass �ux along equatorial regions (see Figure 2 in Kraus, 2006). The
situation may be di�erent in rapidly rotating stars, in which the ionization state
of the gas in the wind can change at a certain latitude due to the drastic drop in
surface temperature. For such stars higher mass �ux may be expected in equa-
torial regions due to the increased number of ions suitable for line-driving. This
e�ect is known as the rotation induced bi-stability mechanism (Pelupessy et al.,
2000). Moreover, the star may switch from the classical fast solution (Castor
et al., 1975) to the so-called slow solution (Curé, 2004) leading also to increased
mass-loss in equatorial regions.

The real rotation speed of a star is di�cult to guess, because usually the
inclination of the rotation axis is not known. Therefore, observations typically
deliver only vrot,eq sin i, i.e. the rotation velocity projected to the line-of-sight,
which is a lower limit to the real rotation velocity. Estimates of projected rota-
tion velocities for massive single-star non-supergiant samples, performed in the
Tarantula (30 Dor) nebula of the Large Magellanic Cloud, revealed a velocity dis-
tribution with a strong peak at low values (∼ 80 km s−1) and a high-velocity tail
(up to 600 km s−1) for O-type stars (16− 60M�, Ramírez-Agudelo et al., 2013),
whereas B-type stars (8 − 16M�, Dufton et al., 2013) can show a bi-modal dis-
tribution with a signi�cant fraction of stars having projected rotation velocities
< 100 km s−1 and another peak spreading from 200 to 250 km s−1. Also for these
type of stars a high-velocity tail (up to ∼ 500 km s−1) is observed, meaning that
a small fraction of O and B-type stars are born with intrinsic rotation speeds
corresponding to a signi�cant fraction of their critical velocities.

A deeper discussion of the e�ects of rotation on the physics and evolution
of massive stars is provided by the excellent textbook of Maeder (2009).

Evolutionary Tracks To predict the properties of massive stars along their en-
tire life path, various research groups have developed their own computer codes
(see Martins & Palacios, 2013, for an overview). All these codes are pure one-
dimensional and utilize a variety of input physics that is implemented in di�erent
ways. Computation of evolutionary tracks of massive stars is performed from the
point of ignition of hydrogen in the stellar cores, de�ned as the zero-age main-
sequence (ZAMS), up to pre-supernova stages. But comparison of the model
predictions for the evolutionary track of a massive star with initially identical
properties clearly shows a huge diversity and strong disagreement, especially after
the star turns o� from the main sequence. This was impressively demonstrated
by the analysis of Martins & Palacios (2013) (see, e.g., their Figure 4).

Moreover, both e�ects, rotation and mass-loss, signi�cantly in�uence and
alter the evolution of massive stars as previously discussed. Rotation drives the
internal mixing and in�uences mass-loss rates already on the main-sequence.
Consequently, stars with initially identical masses on the ZAMS but diverse
rotation velocities will end up with di�erent properties when they reach the end
of their main-sequence evolution (Meynet & Maeder, 2000).

Given the uncertainties in stellar models and in the (usually poorly con-
straint) initial physical properties such as rotation, it is tricky to assign a star a
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proper initial mass and evolutionary state from a pure comparison of its position
in the Hertzsprung-Russell (HR) diagram with evolutionary model predictions.

1.2. Observed Spectroscopic Phases

From the observational point of view, massive stars in their post-main sequence
evolution are classi�ed based on their spectroscopic appearance. In general, one
distinguishes two types of objects: supergiants and hypergiants.

Supergiants are stars of luminosity class I with subclasses Ia, Iab, and Ib.
In the HR diagram they spread from the hottest to the coolest stars and are
classi�ed according to their e�ective temperature into blue supergiants (spectral
types O and B), yellow supergiants (A, F, G), and red supergiants (K, M).

Objects in the category hypergiants spread also over a certain temperature
range in the HR diagram. Known hypergiants have spectral types ranging from
late-O to G. Hypergiants are often assigned a luminosity class 0 or Ia+, indicating
that these stars have luminosities close to the Eddington limit1.

In addition to these purely temperature and luminosity-class based cat-
egories, evolved massive stars are also found in some evolutionary transition
phases, typically associated with strong mass-loss and eruptions. These classes
are brie�y introduced.

Wolf-Rayet Stars Stars with a Wolf-Rayet (WR) classi�cation are of spectral-
type O and comprise the hottest (30 000− 200 000K) sample of evolved massive
stars. WR stars have strong stellar winds with high mass-loss rates (10−5 −
10−4M�yr−1) and wind velocities ranging from ∼ 1000 km s−1 up to 5500 km s−1.
These intense winds peel o� the outer shells of the star, uncovering successively
the products from the various burning phases. The characteristic emission lines
of WR stars are formed in the extended and dense high-velocity wind region en-
veloping the very hot stellar photosphere. According to the spectral appearance
one distinguishes nitrogen-rich and carbon-rich WR stars as type WN (strong
nitrogen lines) and WC (with carbon lines), or WO (with strong oxygen and
carbon lines). WN and WC stars are further subdivided into early (E) and
late (L) types: WNE (early WN, spreading from WN1 to WN5), respectively
WCE (WC1 to WC5), and WNL (late WN, spreading from WN6 to WN11),
respectively WCL (WC6 to WC9).

WR stars are descendants of massive main-sequence stars (with initial masses
> 25M�) and most likely progenitors of core-collapse supernovae. More details
on WR stars2 and their physical properties can be found in Crowther (2007).

B[e] Supergiants A special class of blue supergiants comprise the B[e] super-
giants. These are mostly supergiants of spectral type B (including a few objects
of spectral types late-O and early-A) that are surrounded by dense circumstellar
environments, typically in the form of a dusty disk and a massive, ionized po-
lar wind. The central stars have luminosities in the range 104 < L/L� < 106.

1This is the maximum luminosity a star reaches when the outwards acting radiation force
balances the inwards acting gravitational force.

2For a list with all Galactic WR stars see http://pacrowther.sta�.shef.ac.uk/WRcat/
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The circumstellar matter gives rise to numerous emission (e) lines, including
emission from forbidden transitions (marked by square brackets), leading to the
designation B[e]. Their massive disks are factories for various molecular species
whose emission features allow to deduce the structure and kinematics of these
disks (e.g., Kraus et al., 2015b; Maravelias et al., 2018), which might be highly
dynamical and variable (Oksala et al., 2012; Torres et al., 2018) or long-lived
enough to provide an environment suitable for the formation of even minor bod-
ies or planets (Kraus et al., 2016).

B[e] supergiants are rare. They constitute just a few percent of all B-type
supergiants. To date, a total of 33 objects has been identi�ed and con�rmed
within the Milky Way and close-by galaxies, whereas another 25 objects have
the status of B[e] supergiant candidates (Kraus, 2019).

Luminous Blue Variables Luminous Blue Variables (LBVs) are hot and lumi-
nous (logL/L� > 5.4) evolved massive stars that display characteristic vari-
ability in the form of either giant eruptions (such as the proto-type η Car) or
excursions to the cool A-F-type supergiant region within the HR diagram in the
form of an SDor cycle named after the �rst object, SDor in the Large Magellanic
Cloud, showing this behavior. These excursions to the red are sometimes also
termed 'outburst', but are not real outbursts connected with mass ejections but
rather with an in�ation of their envelopes at more or less constant luminosity.

SDor cycles are a characteristic feature of LBVs based on which they can be
distinguished from other types of hot luminous objects. They can last from years
to decades. Without having displayed at least one full SDor cycle or a major
eruption, stars with otherwise similar properties to those of bona-�de LBVs, are
only assigned the status of LBV candidates. A list of currently con�rmed and
candidate LBVs in Local Group galaxies is provided in Weis & Bomans (2020).

During the quiescent state of such an SDor cycle, the stars appear like
normal OB supergiants, sometimes displaying a WR-type (e.g., Maryeva et al.,
2019) or a B[e] supergiant spectrum with intense emission lines. But from the
latter they can be separated based on speci�c optical and infrared characteristics
de�ned in Kraus (2019). Quiescent LBVs cluster along a diagonal region in the
HR diagram called the LBV or SDor instability strip (see Figure 1). When they
reach maximum brightness in the SDor cycle, they all appear at about the same
cool temperature.

Due to the high mass-loss of LBVs and their (at least for some objects) giant
eruptions, many LBVs are surrounded by nebulae of gas and dust with sizes of a
few parsecs. While the morphology of the nebulae can be diverse, the majority
displays bipolar structures (Weis, 2011).

It was long assumed that LBVs are a transitional phase in single star evolu-
tion. However, the detection of LBVs as progenitors of core-collapse supernovae
is not in line with a transitional phase. Instead, it has been suggested that (at
least some) LBVs might be the products of binary evolution (Smith, 2017).

Open Issues In summary, the evolution and �nal fate of massive stars depend
severely on the initial conditions (mass, rotation speed, metallicity, magnetic
�elds, companion) and the amount of mass lost within each phase of their life.

Typically, stars within a certain category populate the same region within
the HR diagram. However, diverse groups of stars may overlap, because they
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Figure 1. HR diagram for massive stars. Shown are evolutionary
tracks of non-rotating stars from Ekström et al. (2012) for the indicated
initial stellar masses on the ZAMS. Also included are representatives of
the diverse groups of evolved massive stars. Dashes connecting symbols
indicate the two temperature states, i.e., outburst and S Dor cycle for
YHGs and LBVs, respectively. The thick solid kinked line represents the
Humphreys-Davidson limit, the light-blue area marks the LBV/SDor
instability strip, and the yellow region highlights the Yellow Void.

have the same e�ective temperature and luminosity, but are in di�erent evolu-
tionary states (Figure 1). This can happen, because a certain combination of
stellar parameters may occur more than once during the (red-ward, blue-ward,
blue-loop) evolution of a massive star. Disentangling these populations is not al-
ways straight-forward. Consequently, some of the most relevant unsolved issues
in massive star research comprise:

• What is their evolutionary state and connection to each other?

• Which physical mechanism causes enhanced mass-loss and outbursts?

• How much mass is lost and on which timescales?

• What is the structure and evolution of the ejected material?

Here, focus is given to the second item, and in the following observational and
theoretical considerations of stellar pulsations in some types of evolved massive
stars are discussed.



240 M. Kraus

1.3. Pulsations in Evolved Massive Stars

Pulsations are nowadays ubiquitously found in stars all over the HR diagram.
But currently, we cannot infer from observations whether massive stars in tran-
sition phases such as the LBVs, WRs and B[e]SGs are pulsating3, because their
dense winds usually hide their surfaces, and photometric variability is most likely
a�ected by temporal changes in the wind and circumstellar matter rather than
being purely due to pulsation activity. For the remaining of this Chapter, the
attention is given to two groups of evolved massive stars: B supergiants and
yellow hypergiants, and the possible role of pulsations as physical mechanism to
trigger mass-loss and eruptions in these objects.

2. B Supergiants

Stars in the B supergiant (BSG) evolutionary state are the descendants of OB
main-sequence stars. They have surface temperatures in the range Teff = 10 000−
30 000K and luminosities of L = 104 − 106 L�. BSGs drive winds with mass-
loss rates of Ṁ = 10−7 − 10−5M�yr−1 and terminal velocities of v∞ = 200 −
3500 km s−1. These stars have been assumed to be well-behaved H-shell burning
stars on their red-ward evolution, until the �rst BSG star exploded as supernova
(SN1987A, West et al., 1987). While stars just o� the main-sequence will not
explode as supernova, this �nding of a blue supergiant progenitor of SN1987A
means that the group of BSGs consists of at least two coexisting populations:
BSGs just beyond the main-sequence and BSGs in a post-red or post-yellow
supergiant phase. A possible third population might comprise stars on a blue
loop.

2.1. Characteristics of BSGs

BSGs can be characterized by three distinct properties, which are brie�y outlined.

Light Curve Variability In principle, all OBA supergiants are variable in their
visual light with amplitudes (A) and periods (P ) of these microvariations in the
range A = 0.01 . . . 0.1mag and P = 5 . . . 100 d, respectively. The variabilities
have been reported to obey an amplitude-luminosity relation, meaning that the
brightest stars display the largest amplitudes (Maeder & Rufener, 1972). The
light variations follow no clear periodicities, instead they appear to be semi-
regular. They are most pronounced in the sub-group of BA-type supergiants
with luminosity class Ia. These extreme luminous stars are also often referred
to as αCygni variables (Sterken, 1977), named after the prototype of such stars
αCyg (Deneb). Detailed analyses of light curves of BSGs, e.g. from HIPPAR-
COS, resulted in the discovery of hundreds of new variable stars, of which 29
objects have been classi�ed by Waelkens et al. (1998) as new αCygni variables
exhibiting clear periodic variations with amplitudes between 1 and a few tens of
millimagnitude with periods ranging from a few hours to a few weeks.

3There is one exception: The B[e]SG star LHA120-S 73 in the Large Magellanic Cloud has
been suggested to pulsate based on detected line-pro�le variability of its photospheric He i line
(Kraus et al., 2016).
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Line-Pro�le Variability BSGs and their sub-class, the αCyg variables, display
variability in their line-pro�les with Hα being the most prominent one. Due to
the winds of the BSGs, their Hα lines display typically a PCygni-type pro�le,
which can vary signi�cantly in strength and shape (see, e.g., Rosendhal, 1973;
Kaufer et al., 1996). But also pure photospheric lines seem to display complex
variability patterns indicating cyclic variations in radial velocities. This might
indicate the possible simultaneous excitation of pulsation modes with periods
typical for non-radial oscillations and radial overtones (Kaufer et al., 1997).

�Macro-turbulent� Line Broadening The most puzzling characteristic of BSGs
is their huge amount of broadening in excess to stellar rotation. Simón-Díaz
& Herrero (2007) analyzed photospheric line pro�les of OB stars to derive the
stellar rotation velocities projected to the line of sight (vrot sin i) using the Fourier
transform method. This mathematical approach is a very valuable tracer for
stellar rotation velocities, because the Fourier transform of the rotation pro�le
possesses zero points, which are correlated with vrot sin i. Computing the Fourier
transform of observed photospheric lines thus allows to directly read o� the
rotation velocity of the star projected to the line of sight. For more details on
the stellar rotation pro�le and its Fourier transform, the interested reader is
pointed to Chapter 18 in the textbook of Gray (2005).

The sample of Simón-Díaz & Herrero (2007) contained also OB supergiants,
for which the authors recognized an extra, non-negligible broadening component.
This component has more or less a Gaussian pro�le shape so that it has been
dubbed as �macro-turbulence� without knowing a priori its physical origin. In
fact, the velocities of this �macro-turbulence� needed to reproduce the observed
widths of photospheric lines of BSGs turned out to exceed by far the value
of the sound speed in the atmosphere of BSGs4, meaning that this �macro-
turbulence� has highly supersonic values (see Figure 1 in Simón-Díaz et al.,
2010). If this velocity was due to real turbulences, shocks would form, creating
X-ray emission which is not observed. Therefore, the extra broadening cannot
be due to turbulence but must have another physical nature. And a possible
explanation might be given by the superposition of many pulsations.

2.2. Discovery of Pulsations in BSGs

The previously mentioned characteristics of BSGs (light-curve and line-pro�le
variability along with macro-turbulent line broadening) are a strong indication
for a highly dynamical atmosphere and might point towards the presence of os-
cillations in these luminous objects. However, it was not expected that BSGs
pulsate because of their radiative helium core, which immediately damps all
modes propagating towards the core. Therefore, it was a big surprise when Saio
et al. (2006) reported on the discovery of multiple oscillations in the BSG star
HD163899. These authors had analyzed a 37 day long continuous, high preci-
sion photometric light curve collected with the Canadian satellite MOST. Their
studies revealed 48 periods from 10 h to 25 d, which they assigned to pulsations
in both p-modes and g-modes.

4As an example, a value of vmacro = 80 km s−1 along with vrot sin i = 47 km s−1 is needed to �t
the shape of the Si iii lines of the B0 Ia supergiant star HD89767, (see Figure 4 in Puls, 2008).
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Especially the occurrence of g-modes in a post-main sequence massive super-
giant star was surprising. The stability analysis of Saio et al. (2006) revealed that
the existence of g-modes can be explained by the development of an intermedi-
ate convective zone (ICZ) connected with the hydrogen burning shell. This ICZ
results from a semi-convection episode during the main-sequence evolution. At
this convective zone selected g-modes can be re�ected back towards the surface.
The ICZ hence prevents the modes from penetrating the radiative damping core
of the star and, therefore, supports the establishment of g-mode pulsations. But
for this, the position of the ICZ within the envelope plays an important role. If it
is located too close to the surface, oscillations cannot be excited, and if it is too
close to the core, the excited oscillations will be signi�cantly damped. Moreover,
the presence of physical e�ects such as rotation (mixing) and magnetic �elds, as
well as the strength of mass-loss, semi-convection, and overshooting during the
main-sequence evolution have been found to in�uence the evolution of massive
stars and thus can favor or prevent the formation of the ICZ (see, e.g., Godart
et al., 2009, 2014). In that respect it is worth mentioning that follow-up inves-
tigations of Daszy«ska-Daszkiewicz et al. (2013) have shown that the detection
of pulsations is not necessarily a proof for the existence of an ICZ, but only for
the presence of some re�ective layer, which might also have a di�erent physical
origin.

Saio et al. (2006) computed stellar models using the updated OPAL opacities
(Iglesias & Rogers, 1996) for stars covering a range of initial masses of 7�20M�
from the main-sequence into the BSG domain. As in most stars, it is the κ-
mechanism that excites the modes in BSGs. This mechanism acts due to the iron-
opacity bump in the super�cial layers. Their analysis revealed a new instability
domain for g-mode pulsations, covering the loci of BSGs in the HR diagram. For
the BSG star HD163899 the frequencies of these pulsations were in fairly good
agreement with the frequencies found from the photometric light curve. Follow-
up studies of BSGs with known photometric variability, e.g. from HIPPARCOS
light curves, were found to have stellar parameters that placed them into the
newly identi�ed instability domain and were hence considered as gravity-mode
pulsators (Lefever et al., 2007).

With the knowledge of multiple g-mode pulsations acting in BSGs, Aerts
et al. (2009) could show that the shapes of the metal line pro�les of BSGs can
be naturally explained by combining the broadening caused by the velocity of
hundreds of low-amplitude, non-radial gravity-mode pulsations. This was the
�rst �rm proof that pulsations can signi�cantly contribute to (if not completely
explain) the �macro-turbulent� line broadening observed in BSGs. Besides g-
mode pulsations as the cause for �macro-turbulence� other scenarios appeared in
the literature and require further notice. One of them comprises stochastically
excited oscillations caused by subsurface convection (Grassitelli et al., 2015),
another one proposes convectively driven internal gravity waves (Aerts & Rogers,
2015). Which of them is really responsible for the �macro-turbulence� in BSGs
needs to be further studied, and maybe the truth lies in the interplay of more
than one e�ect.
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2.3. Pulsation Behavior in the Di�erent BSG Populations

The discovery of pulsations in BSGs and the identi�cation of the new instabil-
ity domain helped to explain the observed variabilities in a number of BSGs.
However, those BSGs that were classi�ed as α Cygni variables display variabil-
ities that point towards multiple periods spreading over a large period range.
These are not in agreement with what would be expected from pure non-radial
g-mode oscillations. Especially the long periods are more likely connected to
radial modes. To test this hypothesis, Saio et al. (2013) extended their calcu-
lations of pulsation instabilities and computed the pulsation patterns following
the evolution of massive stars up to the red-supergiant (RSG) stage and beyond
for stars with initial masses up to 25M�. They did that for the case of both
non-rotating stars and stars rotating initially with 40% of their critical speed.

Figure 2. Evolutionary tracks (top) of stars with rotation and the
excited pulsation periods in the models (bottom) during the pre- (left)
and post-RSG (right) phase. For comparison, the period ranges of some
α Cyg variables in the Milky Way and NGC 300 are included. Figure
is taken from Saio et al. (2013) (their Figure 5).

As stellar evolution calculations of Ekström et al. (2012) have shown, rotat-
ing stars tend to evolve back to the blue side of the HR diagram after having
passed through a cool, RSG phase, whereas non-rotating stars evolve only to the
RSG stage and explode there as supernovae. Based on these latter models, the
calculations of Saio et al. (2013) (see Figure 2) predict the excitation of radial
pulsations only during the main-sequence and shortly after, and during their
RSG state. In between, i.e. in the temperature regime from 20 000K down to
about 6 000K where the α Cygni variables reside, no radial modes are excited.

For the stellar models with rotation, the situation with respect to the ex-
citation of radial modes during the pre-RSG evolution is very similar to the
non-rotating models, and the radial fundamental mode is only excited within
the β Cephei instability region. Within the BSG domain only very few oscilla-
tory convection modes are predicted which cannot explain the number and period



244 M. Kraus

range of the observed oscillations in α Cygni variables. However, after the stars
have passed through the RSG state, they develop a complex frequency behavior.
They are capable to establish and maintain numerous pulsation modes spreading
over a large period range, in agreement with the range of observed periods in the
α Cygni variables.

Among the excited modes are several radial ones, including the so-called
radial strange modes. These strange modes are particularly interesting, be-
cause they have been proposed to cause pulsation-driven time-variable mass-loss
(Glatzel et al., 1999), leading to the interpretation of periodic variability of su-
pergiants in terms of strange-mode instabilities (Glatzel & Kiriakidis, 1993). A
prerequisite for their excitation is that the star needs to reach a luminosity over
mass ratio of L∗/M∗ > 104 L�/M� (Gautschy & Glatzel, 1990; Glatzel, 1994).
Exceeding such a limit is no problem for massive stars that have passed through
the RSG phase, during which they tend to loose a signi�cant fraction of their
mass via dense dust-driven winds thus increasing their L∗/M∗ easily by a factor
of 2 or more. Consequently, post-RSGs have much lower masses but similar lu-
minosities than their younger pre-RSG counterparts, and present a completely
di�erent pulsation behavior. These di�erences can be used to pin down the evo-
lutionary stage of BSGs by sorting them into pre- and post-RSGs, and to identify
in such way possible supernova progenitors, for which the α Cygni variables seem
to be suitable candidates.

2.4. Identi�cation of Pulsations in BSGs

For the identi�cation of stellar pulsations two types of observations are typically
used: photometric light curves and spectroscopic time series.

Photometric Light Curves Photometric variability in BSGs has been detected
based on light curves, especially from satellite missions such as HIPPARCOS
and MOST as mentioned before. But also other satellites such as BRITE and
TESS observed (and still observe) a number of them.

However, light curves of BSGs, especially when the band passes are opti-
mized for the red, face two issues. Firstly, BSGs have stellar winds, which is
obvious from PCygni-type pro�les of their Hα lines. These winds are not steady
but vary in time as can be seen from the sample of Hα pro�le shapes of the
BSG star 55Cyg shown in Figure 3. But the variation is not periodic, as has
been demonstrated by Kraus et al. (2015a). The wavelength range covering Hα
is contained in the white-light �lter of HIPPARCOS, and in both the red band
pass of BRITE and the wide band pass of TESS. Therefore, any variability in
the Hα line due to changes in the wind conditions will automatically imprint
a variability signature on the stellar brightness measured by the photometric
magnitude.

Second, depending on their density distribution, the winds of BSGs can
alter the continuum �ux. These winds have a radial velocity distribution that is
usually described with the so-called β-law, de�ned by v(r) = v0 + (v∞− v0)(1−
R∗/r)

β , where v∞ is the terminal wind velocity, v0 is the velocity at the base of
the wind, R∗ is the stellar radius, and β describes the �steepness� of the velocity
increase. Values of β for OB stars with line-driven winds are normally in the
range 0.8-1.0, but for many BSGs, β has been proposed to take values of 3 or



Pulsations in Evolved Massive Stars 245

Figure 3. Snapshots of the Hα line of the BSG star 55Cyg demon-
strating the wind variability. The data were taken during a 14-day
period in 2013 with the Perek 2-m telescope at Ond°ejov Observatory.

even higher (e.g., Crowther et al., 2006). However, the higher the value of β, the
higher is the density within the innermost wind region. As has been shown by
Kraus et al. (2008), winds of BSGs with β > 1 signi�cantly contribute with their
free-free and free-bound emission to the total continuum emission, especially
in the red part of the spectrum. Any variation in the wind thus produces an
additional variability signal that in�uences and perturbs the measured stellar
brightness and can (maybe severely) hamper the frequency analysis.

Considering these two e�ects, it is questionable whether photometric obser-
vations in broad-band �lters or even in white light (such as TESS) can provide
reliable insight into the pulsation behavior of those BSGs (such as the α Cygni
variables), whose photometric �uxes are contaminated by variable wind emis-
sion due to signi�cant changes in stellar mass-loss rates a�ecting both the red
continuum and the Hα line pro�le.

Figure 4. TESS example light curve of the α Cygni variable 55Cygnus.

An example of a TESS light curve5 of an α Cyg variable is shown in Figure 4.
TESS has observed this star during two periods labeled as sectors 15 and 16.
Obviously, the character of the variability has changed between the two observing
runs. While it showed a smooth behavior during the �rst period, it appears more
irregular and chaotic during the second one.

5The data described here may be obtained from the MAST archive at https://dx.doi.org/
10.17909/t9-ncv5-bb52.
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Spectroscopic Time Series Spectroscopic time series of high-quality (in both
resolution and signal-to-noise level) provide an excellent tool to unveil whether
the variability in the observed line pro�les are due to pulsations, and to inves-
tigate whether the periodicities are strict such as for long-term coherent modes.
This requires the monitoring of photospheric lines, typically of metals, which are
not a�ected by superimposed emission from the stellar wind.

As has been discussed in a previous Chapter, pulsations cause changes in
radial velocity and in the pro�le shape of the lines. To quantify these parameters,
we make use of the so-called �velocity moments� of the lines, based on which a
line pro�le is fully characterized (see, e.g., Aerts et al., 1992, 2010a; North &
Paltani, 1994). Considering that a spectral line is a set of discrete measurements
(λi, Fi), its moments are de�ned in the following way:

M0 =
N∑
i=1

(1 − Fi)∆xi, (1)

M1 =

N∑
i=1

(1 − Fi)(xi − x0)∆xi, (2)

M2 =
N∑
i=1

(1 − Fi)(xi − x0)2∆xi, (3)

M3 =
N∑
i=1

(1 − Fi)(xi − x0)3∆xi, (4)

with the normalized �ux Fi measured at wavelength λi for pixel i, ∆xi = xi−xi−1

whereby xi is the velocity corresponding to λi with respect to the laboratory
wavelength of the line (λ0), and x0 is the relative motion of the star with respect
to the Sun that needs to be corrected for to guarantee that the odd moments
have an average of zero.

For practical purposes one utilizes the normalized moments, which are de-
�ned as

〈
vj
〉

= Mj/M0 for j = 1, 2, 3. The units of these moments are (km s−1)j ,
and the �rst three of these normalized moments are connected to speci�c prop-
erties of the pro�le:〈

v1
〉
is the radial velocity, i.e., a measure for the center of gravity of the line,〈

v2
〉
provides a measure for the line width, and〈

v3
〉
measures the skewness, i.e. the asymmetry of the pro�le.

Each photospheric line forms over a certain range of depth in the atmosphere,
and the actual velocity of motion is a function of stellar longitude, latitude, and
depth. Moreover, we see the stellar surface only in its projection, and the radial
velocity is inferred from the integration over that projected surface. Therefore,
the �rst moment provides not any pulsation velocity, but it can be used to derive
the periods of the pulsations.
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The variations recorded in the moments can furthermore be used to sepa-
rate pulsating stars from stars with other types of variability, such as stars with
surface spots. Stellar spots are commonly seen in chemically peculiar stars, in
which localized over- and under-abundances in speci�c elements cause surface
inhomogeneities. Consequently, the variability in such stars is linked to the stel-
lar rotation period, and di�erent elements display diverse variabilities (see e.g.,
Briquet et al., 2004; Lehmann et al., 2006) in contrast to pulsating stars, in
which the lines from di�erent elements vary in phase. Moreover, theoretically
generated pro�les of pulsating stars have revealed that their �rst and third nor-
malized moments vary in phase as well (de Pauw et al., 1993). This property is
also useful to discriminate pulsating stars from objects with spots (e.g., Briquet
et al., 2004).

Application of the moment method to spectroscopic time series of two BSG
stars (σ Cyg and 55 Cyg) collected with the Perek 2-m telescope in the wave-
length range 6250 − 6750Å with a spectral resolution of 13 000 and a signal-to-
noise ratio of S/N > 300 resulted in interesting discoveries. For σ Cyg, a very
short oscillation period of just 1.59 hours (Kraus et al., 2012) has been identi-
�ed from several short-term time series of the photospheric Si ii and He i lines
(Figure 5).

Figure 5. First and third moment of the photospheric
Si iiλλ6347,6371 and the He iλ6678 lines of the BSG star σ Cyg. The
spectroscopic time series were taken in 2010 and 2012. The oscillation
character is deduced from the fact that both, the �rst and third
moments of each element and the moments of di�erent elements vary
in phase. The data have been phased to the identi�ed period of 1.59 h.
Credit: Kraus et al. (2012), reproduced with permission c©ESO.

In the long-term spectroscopic time series of the BSG star 55 Cyg, a total
of 19 periods have been found from the analysis of the radial velocity curve of
the photospheric He iλ6678 line. These periods range from a few hours to 22.5
days, in agreement with their classi�cation as p-modes, g-modes, and at least
one radial strange mode (Kraus et al., 2015a). Moreover, the analysis of the



248 M. Kraus

wind and stellar parameters of 55 Cyg based on computation of the Balmer,
helium and silicon lines using the FASTWIND code (Puls et al., 2005) revealed
that the star has a time-variable radius along with variable wind conditions, in
agreement with cyclic phases of enhanced mass-loss. In particular, for the stellar
parameters it has been found that the e�ective temperature, Teff , ranges from
18 570K to 19 100K, the stellar radius is R∗ = 57±1R� but varies from 52 to 65
R�, and the stellar luminosity is logL∗/L� = 5.57± 0.03. With a spectroscopic
mass of 34 ± 4M�, L∗/M∗ > 104 L�/M�, which is the needed condition for the
star to be able to excite strange mode pulsations. In addition, the line pro�les
revealed values for vrot sin i = 50 − 60 km s−1 and vmacro = 10 − 50 km s−1.

For the wind parameters of 55 Cyg it was found that Ṁ varies between 1.5×
10−7 and 4.6 × 10−7M�yr−1, meaning that the change in mass loss occasionally
exceeds a factor of 3. In addition, v∞ varies between 230 and 350 km s−1, with
exceptions of 600 and 700 km s−1 at times when also the mass-loss rates were
increased. The large amount of detected periods including a radial strange mode
resulted in the classi�cation of 55 Cyg as a post-RSG object and hence as an
α Cyg variable.

The �ndings of multiple pulsation periods in 55 Cyg have been con�rmed by
numerical non-linear simulations performed by Yadav & Glatzel (2016). Their
calculations additionally unveiled that 55 Cyg undergoes strange-mode instabil-
ities with triggered mass-loss, in agreement with the results derived from the
observations.

Periodic mass-loss episodes related to a time-variable oscillation mode have
also been found in the BSG star HD50064 (Aerts et al., 2010b), and wind vari-
ability along with a pulsation�mass-loss relation was postulated for a sample
of BSGs by Haucke et al. (2018). These results reinforce the need of in depth
studies of the pulsation and mass-loss properties and their interrelation in these
luminous objects.

3. Yellow Hypergiants

Stars falling into the category of yellow hypergiants (YHGs) reside in the temper-
ature regime Teff = 4000− 9000K and have luminosities of L = 105.3 − 105.8 L�.
These objects have evolved from progenitor stars with initial masses in the range
25−50M�. YHGs are rare objects, implying a short lifetime of this evolutionary
transition phase. In total we currently know of ∼30 objects that are classi�ed
as YHGs or YHG candidates in the Milky Way and neighboring galaxies of the
Local Group (e.g., de Jager, 1998; Clark et al., 2005; Kourniotis et al., 2017),
and so far, only a handful of them have been thoroughly examined.

YHGs have been proposed to have passed through the RSG phase and evolve
now back to the hot side of the HR diagram (de Jager, 1998). The structure
of YHGs can best be approximated by a compact core that is surrounded by
a huge in�ated, low-density envelope. Due to this in�ation, the surface gravity
of YHGs is very small or can even approach a value of zero. This means, that
even smallest perturbations within the atmosphere can initiate mass-loss from
the star.

When the star reaches a surface temperature of ∼ 7000K, its atmosphere
becomes dynamically unstable (Nieuwenhuijzen & de Jager, 1995; Lobel, 2001).
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Strong mass loss sets in, creating what is called a pseudo-photosphere and veiling
the central object. Such an outburst phase can last from a few months up to
years during which the pseudo-photosphere mimics a much cooler temperature
of the object. Only after the termination of the strongly enhanced mass-loss and
when the released material has diluted, the star appears back at its real (hotter)
temperature. This process repeats until the stellar atmosphere �nally reaches
again an equilibrium state. However, for a stable state, the star must reach
an e�ective temperature of about 12000K. This means that the star remains
unstable until it has lost its complete outer layers, which is done most likely in
a series of such outbursts. The temperature region of this instability domain,
spreading from 7000 to 12000K in the HR diagram, appears to be vacant of stars
and was thus called the Yellow Void.

Because the star seems to move back and forwards in the HR diagram, YHGs
are indicated in Figure 1 by connecting lines between the real (hot) position of
the star and its position during outburst (cool). The multiple attempts of the
star to pass through this temperature domain has been described as bouncing
at the Yellow Void (de Jager, 1998) respectively Yellow Wall (Oudmaijer et al.,
2009). As a consequence of this bouncing and the multiple mass ejection phases,
the star might be surrounded by several distinct shells of gas and dust as is seen,
e.g., around the star IRAS 17163-3907 dubbed as the fried-egg nebula (Lagadec
et al., 2011).

Most famous for its outbursts is the Galactic YHG star ρ Cas (=HD224014).
This star has been monitored for more than a century. During that time, the
star underwent several outbursts with major events in 1945�1947, 1985�1986,
2000�2001, and a most recent, shorter and less pronounced one in 2013 (Kraus
et al., 2019). The outbursts can be traced by a strong decrease in brightness
by more than 1 mag in V-band along with the development of spectroscopic
signatures of molecules such as TiO and CO that form within the developing
cool, massive wind (e.g., Lobel et al., 2003; Gorlova et al., 2006). The decrease
in the time interval between individual outbursts might indicate that the star
could be preparing for a major eruption that might help to catapult it out of the
Yellow Void instability region and would �nally allow the star to reach a new,
hot equilibrium state.

In contrast to ρ Cas, the YHG star V509Cas (=HD217476, HR8752) dis-
played a di�erent behavior over the past ∼ 150 yr. It also underwent a number
of material ejection events during which a pseudo-photosphere was produced
and the temperature dropped. However, underneath these temperature �uctu-
ations the star experienced a real increase in e�ective temperature from about
5000K back in 1973 to 8000K in 2001 (Nieuwenhuijzen et al., 2012). Since then,
this development seems to have stopped (Aret et al., 2017). A similar trend
with an increasing e�ective temperature has been reported for the YHG object
IRC+10420. Spectroscopic monitoring of this object revealed that it has changed
from spectral type F8 to a mid-A type, meaning that it heated up by more than
1000K over the course of about 20 years (Oudmaijer et al., 1996; Oudmaijer,
1998), and then stabilized in the vicinity of the high-temperature boundary of
the Yellow Void (Klochkova et al., 2016).
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3.1. Indications for Pulsations in YHGs

Outside their outburst phases YHGs display both spectroscopic and photometric
variability, that are reminiscent of pulsation activity.

Theoretical investigations by Fadeyev (2011) proposed that the κ-mechanism
operating in the helium ionization zones can cause radial pulsations with periods
up to 200 d. However, the observed light curves of YHGs display low-amplitude
photometric variability which has quasi-periods that are much longer, reaching
a few hundred days (e.g., Percy & Zsoldos, 1992; Arkhipova et al., 2009; Kraus
et al., 2019). These quasi-periods can most likely be ascribed to semi-regular,
non-radial pulsations (Lobel et al., 1994).

Spectroscopic monitoring reveals that the atmospheres of YHGs are highly
dynamical, as has been proven by radial velocity measurements of a variety
of atmospheric lines formed in di�erent depths (e.g., Klochkova et al., 2014;
Klochkova, 2019). These atmospheric motions also display a quasi-periodic vari-
ation in agreement with semi-regular pulsations, and it has been found that this
pulsation activity increases, i.e. develops larger velocity amplitudes prior to out-
bursts (Lobel et al., 2003; Kraus et al., 2019). Such a behavior is commonly
observed in relation to the excitation and development of strange mode instabil-
ities. Alike the α Cygni variables YHGs have lost a signi�cant amount of mass
during their previous RSG evolution so that they ful�ll the required criteria of
a high luminosity to mass ratio for strange mode excitation, and detailed nu-
merical investigations are badly needed and currently underway that will help
to deepen our comprehension of pulsations in YHGs and their ability to trigger
outbursts.

4. Conclusions

This Chapter was devoted to some intriguing post-main sequence phases through
which a massive star may evolve and which have been reported to display pulsa-
tions. Among them were the BSGs, which can be either in a pre- or a post-RSG
stage, the latter are also known as α Cygni variables. It has been shown that
these two populations display divers pulsation properties. In particular, stars
in the post-RSG phase typically display many more pulsation modes than their
younger counterparts. Detailed pulsation analyses of BSGs can thus provide a
meaningful tool to separate these two BSG populations. However, care should
be taken with the choice of data for the analysis. The photometric light curves
might be contaminated by the variable emission of their high-density winds,
which can lead to false results.

A second group of objects, that has been presented, are comprised by the
YHGs. Alike the α Cygni variables, YHGs are also massive stars in their post-
RSG evolution, but these objects reside still within the cool, yellow domain
of the HR diagram. YHGs perform long-term (several hundred days) quasi-
periodic oscillations and undergo from time to time outbursts with strongly en-
hanced mass loss. These outbursts, which are also related to the formation of a
pseudo-photosphere, lead to an apparent (much) cooler temperature of the ob-
ject. Moreover, the objects display a strongly enhanced pulsation activity prior
to the outbursts.
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Both groups of stars, the α Cygni variables and the YHGs, provide ideal
conditions for the excitation of strange-mode instabilities. Investigations of the
properties of such strange modes revealed that these instabilities can lead to
signi�cant mass-loss, which can reach values comparable to or even in excess
to those from the line-driven winds of these objects. Consequently, strange-
mode pulsations might provide an important component to the observed wind
variability and the formation of structures and density inhomogeneities in the
winds of α Cygni variables. Moreover, they might be a suitable trigger for the
outbursts observed in YHGs.

YHGs and α Cygni variables are cornerstone objects in the evolution of
massive stars, because they constitute a link between the cool RSGs and the hot
pre-supernova evolutionary stages such as Wolf-Rayet stars and Luminous Blue
Variables. Detailed knowledge about the mass-loss behavior in these transition
phases in stellar evolution is essential because the mass loss controls the fate of
these fascinating objects.
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